TESTING/LIN/zqlt01.f(3) | Library Functions Manual | TESTING/LIN/zqlt01.f(3) |
NAME
TESTING/LIN/zqlt01.f
SYNOPSIS
Functions/Subroutines
subroutine zqlt01 (m, n, a, af, q, l, lda, tau, work,
lwork, rwork, result)
ZQLT01
Function/Subroutine Documentation
subroutine zqlt01 (integer m, integer n, complex*16, dimension( lda, * ) a, complex*16, dimension( lda, * ) af, complex*16, dimension( lda, * ) q, complex*16, dimension( lda, * ) l, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( * ) result)
ZQLT01
Purpose:
!> !> ZQLT01 tests ZGEQLF, which computes the QL factorization of an m-by-n !> matrix A, and partially tests ZUNGQL which forms the m-by-m !> orthogonal matrix Q. !> !> ZQLT01 compares L with Q'*A, and checks that Q is orthogonal. !>
Parameters
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> The m-by-n matrix A. !>
AF
!> AF is COMPLEX*16 array, dimension (LDA,N) !> Details of the QL factorization of A, as returned by ZGEQLF. !> See ZGEQLF for further details. !>
Q
!> Q is COMPLEX*16 array, dimension (LDA,M) !> The m-by-m orthogonal matrix Q. !>
L
!> L is COMPLEX*16 array, dimension (LDA,max(M,N)) !>
LDA
!> LDA is INTEGER !> The leading dimension of the arrays A, AF, Q and R. !> LDA >= max(M,N). !>
TAU
!> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors, as returned !> by ZGEQLF. !>
WORK
!> WORK is COMPLEX*16 array, dimension (LWORK) !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (M) !>
RESULT
!> RESULT is DOUBLE PRECISION array, dimension (2) !> The test ratios: !> RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS ) !> RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 124 of file zqlt01.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |