.TH "TESTING/LIN/zqlt01.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/LIN/zqlt01.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzqlt01\fP (m, n, a, af, q, l, lda, tau, work, lwork, rwork, result)" .br .RI "\fBZQLT01\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zqlt01 (integer m, integer n, complex*16, dimension( lda, * ) a, complex*16, dimension( lda, * ) af, complex*16, dimension( lda, * ) q, complex*16, dimension( lda, * ) l, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( * ) result)" .PP \fBZQLT01\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZQLT01 tests ZGEQLF, which computes the QL factorization of an m-by-n !> matrix A, and partially tests ZUNGQL which forms the m-by-m !> orthogonal matrix Q\&. !> !> ZQLT01 compares L with Q'*A, and checks that Q is orthogonal\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> The m-by-n matrix A\&. !> .fi .PP .br \fIAF\fP .PP .nf !> AF is COMPLEX*16 array, dimension (LDA,N) !> Details of the QL factorization of A, as returned by ZGEQLF\&. !> See ZGEQLF for further details\&. !> .fi .PP .br \fIQ\fP .PP .nf !> Q is COMPLEX*16 array, dimension (LDA,M) !> The m-by-m orthogonal matrix Q\&. !> .fi .PP .br \fIL\fP .PP .nf !> L is COMPLEX*16 array, dimension (LDA,max(M,N)) !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the arrays A, AF, Q and R\&. !> LDA >= max(M,N)\&. !> .fi .PP .br \fITAU\fP .PP .nf !> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors, as returned !> by ZGEQLF\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (LWORK) !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (M) !> .fi .PP .br \fIRESULT\fP .PP .nf !> RESULT is DOUBLE PRECISION array, dimension (2) !> The test ratios: !> RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS ) !> RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB124\fP of file \fBzqlt01\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.