SRC/zlar2v.f(3) Library Functions Manual SRC/zlar2v.f(3)

SRC/zlar2v.f


subroutine zlar2v (n, x, y, z, incx, c, s, incc)
ZLAR2V applies a vector of plane rotations with real cosines and complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.

ZLAR2V applies a vector of plane rotations with real cosines and complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.

Purpose:

 ZLAR2V applies a vector of complex plane rotations with real cosines
 from both sides to a sequence of 2-by-2 complex Hermitian matrices,
 defined by the elements of the vectors x, y and z. For i = 1,2,...,n
    (       x(i)  z(i) ) :=
    ( conjg(z(i)) y(i) )
      (  c(i) conjg(s(i)) ) (       x(i)  z(i) ) ( c(i) -conjg(s(i)) )
      ( -s(i)       c(i)  ) ( conjg(z(i)) y(i) ) ( s(i)        c(i)  )

Parameters

N
          N is INTEGER
          The number of plane rotations to be applied.

X

          X is COMPLEX*16 array, dimension (1+(N-1)*INCX)
          The vector x; the elements of x are assumed to be real.

Y

          Y is COMPLEX*16 array, dimension (1+(N-1)*INCX)
          The vector y; the elements of y are assumed to be real.

Z

          Z is COMPLEX*16 array, dimension (1+(N-1)*INCX)
          The vector z.

INCX

          INCX is INTEGER
          The increment between elements of X, Y and Z. INCX > 0.

C

          C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
          The cosines of the plane rotations.

S

          S is COMPLEX*16 array, dimension (1+(N-1)*INCC)
          The sines of the plane rotations.

INCC

          INCC is INTEGER
          The increment between elements of C and S. INCC > 0.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 110 of file zlar2v.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK