.TH "SRC/zlar2v.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zlar2v.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzlar2v\fP (n, x, y, z, incx, c, s, incc)" .br .RI "\fBZLAR2V\fP applies a vector of plane rotations with real cosines and complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zlar2v (integer n, complex*16, dimension( * ) x, complex*16, dimension( * ) y, complex*16, dimension( * ) z, integer incx, double precision, dimension( * ) c, complex*16, dimension( * ) s, integer incc)" .PP \fBZLAR2V\fP applies a vector of plane rotations with real cosines and complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices\&. .PP \fBPurpose:\fP .RS 4 .PP .nf ZLAR2V applies a vector of complex plane rotations with real cosines from both sides to a sequence of 2-by-2 complex Hermitian matrices, defined by the elements of the vectors x, y and z\&. For i = 1,2,\&.\&.\&.,n ( x(i) z(i) ) := ( conjg(z(i)) y(i) ) ( c(i) conjg(s(i)) ) ( x(i) z(i) ) ( c(i) -conjg(s(i)) ) ( -s(i) c(i) ) ( conjg(z(i)) y(i) ) ( s(i) c(i) ) .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf N is INTEGER The number of plane rotations to be applied\&. .fi .PP .br \fIX\fP .PP .nf X is COMPLEX*16 array, dimension (1+(N-1)*INCX) The vector x; the elements of x are assumed to be real\&. .fi .PP .br \fIY\fP .PP .nf Y is COMPLEX*16 array, dimension (1+(N-1)*INCX) The vector y; the elements of y are assumed to be real\&. .fi .PP .br \fIZ\fP .PP .nf Z is COMPLEX*16 array, dimension (1+(N-1)*INCX) The vector z\&. .fi .PP .br \fIINCX\fP .PP .nf INCX is INTEGER The increment between elements of X, Y and Z\&. INCX > 0\&. .fi .PP .br \fIC\fP .PP .nf C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC) The cosines of the plane rotations\&. .fi .PP .br \fIS\fP .PP .nf S is COMPLEX*16 array, dimension (1+(N-1)*INCC) The sines of the plane rotations\&. .fi .PP .br \fIINCC\fP .PP .nf INCC is INTEGER The increment between elements of C and S\&. INCC > 0\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB110\fP of file \fBzlar2v\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.