SRC/zlaqp2.f(3) | Library Functions Manual | SRC/zlaqp2.f(3) |
NAME
SRC/zlaqp2.f
SYNOPSIS
Functions/Subroutines
subroutine zlaqp2 (m, n, offset, a, lda, jpvt, tau, vn1,
vn2, work)
ZLAQP2 computes a QR factorization with column pivoting of the matrix
block.
Function/Subroutine Documentation
subroutine zlaqp2 (integer m, integer n, integer offset, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, complex*16, dimension( * ) tau, double precision, dimension( * ) vn1, double precision, dimension( * ) vn2, complex*16, dimension( * ) work)
ZLAQP2 computes a QR factorization with column pivoting of the matrix block.
Purpose:
!> !> ZLAQP2 computes a QR factorization with column pivoting of !> the block A(OFFSET+1:M,1:N). !> The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. !>
Parameters
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
OFFSET
!> OFFSET is INTEGER !> The number of rows of the matrix A that must be pivoted !> but no factorized. OFFSET >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, the upper triangle of block A(OFFSET+1:M,1:N) is !> the triangular factor obtained; the elements in block !> A(OFFSET+1:M,1:N) below the diagonal, together with the !> array TAU, represent the orthogonal matrix Q as a product of !> elementary reflectors. Block A(1:OFFSET,1:N) has been !> accordingly pivoted, but no factorized. !>
LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !>
JPVT
!> JPVT is INTEGER array, dimension (N) !> On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted !> to the front of A*P (a leading column); if JPVT(i) = 0, !> the i-th column of A is a free column. !> On exit, if JPVT(i) = k, then the i-th column of A*P !> was the k-th column of A. !>
TAU
!> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors. !>
VN1
!> VN1 is DOUBLE PRECISION array, dimension (N) !> The vector with the partial column norms. !>
VN2
!> VN2 is DOUBLE PRECISION array, dimension (N) !> The vector with the exact column norms. !>
WORK
!> WORK is COMPLEX*16 array, dimension (N) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
G. Quintana-Orti, Depto. de Informatica, Universidad
Jaime I, Spain X. Sun, Computer Science Dept., Duke University, USA
Partial column norm updating strategy modified on April 2011 Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.
Partial column norm updating strategy modified on April 2011 Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.
References:
LAPACK Working Note 176
Definition at line 147 of file zlaqp2.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |