.TH "SRC/zlaqp2.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zlaqp2.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzlaqp2\fP (m, n, offset, a, lda, jpvt, tau, vn1, vn2, work)" .br .RI "\fBZLAQP2\fP computes a QR factorization with column pivoting of the matrix block\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zlaqp2 (integer m, integer n, integer offset, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) jpvt, complex*16, dimension( * ) tau, double precision, dimension( * ) vn1, double precision, dimension( * ) vn2, complex*16, dimension( * ) work)" .PP \fBZLAQP2\fP computes a QR factorization with column pivoting of the matrix block\&. .PP \fBPurpose:\fP .RS 4 .PP .nf ZLAQP2 computes a QR factorization with column pivoting of the block A(OFFSET+1:M,1:N)\&. The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf M is INTEGER The number of rows of the matrix A\&. M >= 0\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The number of columns of the matrix A\&. N >= 0\&. .fi .PP .br \fIOFFSET\fP .PP .nf OFFSET is INTEGER The number of rows of the matrix A that must be pivoted but no factorized\&. OFFSET >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) On entry, the M-by-N matrix A\&. On exit, the upper triangle of block A(OFFSET+1:M,1:N) is the triangular factor obtained; the elements in block A(OFFSET+1:M,1:N) below the diagonal, together with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors\&. Block A(1:OFFSET,1:N) has been accordingly pivoted, but no factorized\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,M)\&. .fi .PP .br \fIJPVT\fP .PP .nf JPVT is INTEGER array, dimension (N) On entry, if JPVT(i) \&.ne\&. 0, the i-th column of A is permuted to the front of A*P (a leading column); if JPVT(i) = 0, the i-th column of A is a free column\&. On exit, if JPVT(i) = k, then the i-th column of A*P was the k-th column of A\&. .fi .PP .br \fITAU\fP .PP .nf TAU is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors\&. .fi .PP .br \fIVN1\fP .PP .nf VN1 is DOUBLE PRECISION array, dimension (N) The vector with the partial column norms\&. .fi .PP .br \fIVN2\fP .PP .nf VN2 is DOUBLE PRECISION array, dimension (N) The vector with the exact column norms\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is COMPLEX*16 array, dimension (N) .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 G\&. Quintana-Orti, Depto\&. de Informatica, Universidad Jaime I, Spain X\&. Sun, Computer Science Dept\&., Duke University, USA .br Partial column norm updating strategy modified on April 2011 Z\&. Drmac and Z\&. Bujanovic, Dept\&. of Mathematics, University of Zagreb, Croatia\&. .RE .PP \fBReferences:\fP .RS 4 LAPACK Working Note 176 .RE .PP .PP Definition at line \fB147\fP of file \fBzlaqp2\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.