SRC/zlanhb.f(3) Library Functions Manual SRC/zlanhb.f(3)

SRC/zlanhb.f


double precision function zlanhb (norm, uplo, n, k, ab, ldab, work)
ZLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.

ZLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.

Purpose:

 ZLANHB  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the element of  largest absolute value  of an
 n by n hermitian band matrix A,  with k super-diagonals.

Returns

ZLANHB
    ZLANHB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.

Parameters

NORM
          NORM is CHARACTER*1
          Specifies the value to be returned in ZLANHB as described
          above.

UPLO

          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          band matrix A is supplied.
          = 'U':  Upper triangular
          = 'L':  Lower triangular

N

          N is INTEGER
          The order of the matrix A.  N >= 0.  When N = 0, ZLANHB is
          set to zero.

K

          K is INTEGER
          The number of super-diagonals or sub-diagonals of the
          band matrix A.  K >= 0.

AB

          AB is COMPLEX*16 array, dimension (LDAB,N)
          The upper or lower triangle of the hermitian band matrix A,
          stored in the first K+1 rows of AB.  The j-th column of A is
          stored in the j-th column of the array AB as follows:
          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
          Note that the imaginary parts of the diagonal elements need
          not be set and are assumed to be zero.

LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= K+1.

WORK

          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
          WORK is not referenced.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 130 of file zlanhb.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK