.TH "SRC/zlanhb.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zlanhb.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "double precision function \fBzlanhb\fP (norm, uplo, n, k, ab, ldab, work)" .br .RI "\fBZLANHB\fP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "double precision function zlanhb (character norm, character uplo, integer n, integer k, complex*16, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) work)" .PP \fBZLANHB\fP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf ZLANHB returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an n by n hermitian band matrix A, with k super-diagonals\&. .fi .PP .RE .PP \fBReturns\fP .RS 4 ZLANHB .PP .nf ZLANHB = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares)\&. Note that max(abs(A(i,j))) is not a consistent matrix norm\&. .fi .PP .RE .PP \fBParameters\fP .RS 4 \fINORM\fP .PP .nf NORM is CHARACTER*1 Specifies the value to be returned in ZLANHB as described above\&. .fi .PP .br \fIUPLO\fP .PP .nf UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the band matrix A is supplied\&. = 'U': Upper triangular = 'L': Lower triangular .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrix A\&. N >= 0\&. When N = 0, ZLANHB is set to zero\&. .fi .PP .br \fIK\fP .PP .nf K is INTEGER The number of super-diagonals or sub-diagonals of the band matrix A\&. K >= 0\&. .fi .PP .br \fIAB\fP .PP .nf AB is COMPLEX*16 array, dimension (LDAB,N) The upper or lower triangle of the hermitian band matrix A, stored in the first K+1 rows of AB\&. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k)\&. Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero\&. .fi .PP .br \fILDAB\fP .PP .nf LDAB is INTEGER The leading dimension of the array AB\&. LDAB >= K+1\&. .fi .PP .br \fIWORK\fP .PP .nf WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, WORK is not referenced\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB130\fP of file \fBzlanhb\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.