INSTALL/test_zcomplexdiv.f(3) | Library Functions Manual | INSTALL/test_zcomplexdiv.f(3) |
NAME
INSTALL/test_zcomplexdiv.f
SYNOPSIS
Functions/Subroutines
program zdiv
zdiv tests the robustness and precision of the double complex division
Function/Subroutine Documentation
program zdiv
zdiv tests the robustness and precision of the double complex division
Author
Weslley S. Pereira, University of Colorado Denver, U.S.
Real values for test: (1) x = 2**m, where m = MINEXPONENT-DIGITS, ..., MINEXPONENT-1. Mind that not all platforms might implement subnormal numbers. (2) x = 2**m, where m = MINEXPONENT, ..., 0. (3) x = OV, where OV is the overflow threshold. OV^2 overflows but the norm is OV. (4) x = 2**m, where m = MAXEXPONENT-1, ..., 1. Tests: (a) y = x + 0 * I, y/y = 1 (b) y = 0 + x * I, y/y = 1 (c) y = x + x * I, y/y = 1 (d) y1 = 0 + x * I, y2 = x + 0 * I, y1/y2 = I (e) y1 = 0 + x * I, y2 = x + 0 * I, y2/y1 = -I (f) y = x + x * I, y/conj(y) = I Special cases: (i) Inf inputs: (1) y = ( Inf + 0 * I) (2) y = ( 0 + Inf * I) (3) y = (-Inf + 0 * I) (4) y = ( 0 - Inf * I) (5) y = ( Inf + Inf * I) Tests: (a) 0 / y is either 0 or NaN. (b) 1 / y is either 0 or NaN. (c) y / y is NaN. (n) NaN inputs: (1) y = (NaN + 0 * I) (2) y = (0 + NaN * I) (3) y = (NaN + NaN * I) Tests: (a) 0 / y is NaN. (b) 1 / y is NaN. (c) y / y is NaN.
Definition at line 57 of file test_zcomplexdiv.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |