.TH "INSTALL/test_zcomplexdiv.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME INSTALL/test_zcomplexdiv.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "program \fBzdiv\fP" .br .RI "zdiv tests the robustness and precision of the double complex division " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "program zdiv" .PP zdiv tests the robustness and precision of the double complex division .PP \fBAuthor\fP .RS 4 Weslley S\&. Pereira, University of Colorado Denver, U\&.S\&. .PP .nf Real values for test: (1) x = 2**m, where m = MINEXPONENT-DIGITS, \&.\&.\&., MINEXPONENT-1\&. Mind that not all platforms might implement subnormal numbers\&. (2) x = 2**m, where m = MINEXPONENT, \&.\&.\&., 0\&. (3) x = OV, where OV is the overflow threshold\&. OV^2 overflows but the norm is OV\&. (4) x = 2**m, where m = MAXEXPONENT-1, \&.\&.\&., 1\&. Tests: (a) y = x + 0 * I, y/y = 1 (b) y = 0 + x * I, y/y = 1 (c) y = x + x * I, y/y = 1 (d) y1 = 0 + x * I, y2 = x + 0 * I, y1/y2 = I (e) y1 = 0 + x * I, y2 = x + 0 * I, y2/y1 = -I (f) y = x + x * I, y/conj(y) = I Special cases: (i) Inf inputs: (1) y = ( Inf + 0 * I) (2) y = ( 0 + Inf * I) (3) y = (-Inf + 0 * I) (4) y = ( 0 - Inf * I) (5) y = ( Inf + Inf * I) Tests: (a) 0 / y is either 0 or NaN\&. (b) 1 / y is either 0 or NaN\&. (c) y / y is NaN\&. (n) NaN inputs: (1) y = (NaN + 0 * I) (2) y = (0 + NaN * I) (3) y = (NaN + NaN * I) Tests: (a) 0 / y is NaN\&. (b) 1 / y is NaN\&. (c) y / y is NaN\&. .fi .PP .RE .PP .PP Definition at line \fB57\fP of file \fBtest_zcomplexdiv\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.