SRC/stzrzf.f(3) Library Functions Manual SRC/stzrzf.f(3)

SRC/stzrzf.f


subroutine stzrzf (m, n, a, lda, tau, work, lwork, info)
STZRZF

STZRZF

Purpose:

!>
!> STZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
!> to upper triangular form by means of orthogonal transformations.
!>
!> The upper trapezoidal matrix A is factored as
!>
!>    A = ( R  0 ) * Z,
!>
!> where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
!> triangular matrix.
!> 

Parameters

M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= M.
!> 

A

!>          A is REAL array, dimension (LDA,N)
!>          On entry, the leading M-by-N upper trapezoidal part of the
!>          array A must contain the matrix to be factorized.
!>          On exit, the leading M-by-M upper triangular part of A
!>          contains the upper triangular matrix R, and elements M+1 to
!>          N of the first M rows of A, with the array TAU, represent the
!>          orthogonal matrix Z as a product of M elementary reflectors.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 

TAU

!>          TAU is REAL array, dimension (M)
!>          The scalar factors of the elementary reflectors.
!> 

WORK

!>          WORK is REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.  LWORK >= max(1,M).
!>          For optimum performance LWORK >= M*NB, where NB is
!>          the optimal blocksize.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 

INFO

!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA

Further Details:

!>
!>  The N-by-N matrix Z can be computed by
!>
!>     Z =  Z(1)*Z(2)* ... *Z(M)
!>
!>  where each N-by-N Z(k) is given by
!>
!>     Z(k) = I - tau(k)*v(k)*v(k)**T
!>
!>  with v(k) is the kth row vector of the M-by-N matrix
!>
!>     V = ( I   A(:,M+1:N) )
!>
!>  I is the M-by-M identity matrix, A(:,M+1:N)
!>  is the output stored in A on exit from STZRZF,
!>  and tau(k) is the kth element of the array TAU.
!>
!> 

Definition at line 150 of file stzrzf.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK