SRC/stzrzf.f(3) Library Functions Manual SRC/stzrzf.f(3) NAME SRC/stzrzf.f SYNOPSIS Functions/Subroutines subroutine stzrzf (m, n, a, lda, tau, work, lwork, info) STZRZF Function/Subroutine Documentation subroutine stzrzf (integer m, integer n, real, dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( * ) work, integer lwork, integer info) STZRZF Purpose: !> !> STZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A !> to upper triangular form by means of orthogonal transformations. !> !> The upper trapezoidal matrix A is factored as !> !> A = ( R 0 ) * Z, !> !> where Z is an N-by-N orthogonal matrix and R is an M-by-M upper !> triangular matrix. !> Parameters M !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> N !> N is INTEGER !> The number of columns of the matrix A. N >= M. !> A !> A is REAL array, dimension (LDA,N) !> On entry, the leading M-by-N upper trapezoidal part of the !> array A must contain the matrix to be factorized. !> On exit, the leading M-by-M upper triangular part of A !> contains the upper triangular matrix R, and elements M+1 to !> N of the first M rows of A, with the array TAU, represent the !> orthogonal matrix Z as a product of M elementary reflectors. !> LDA !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> TAU !> TAU is REAL array, dimension (M) !> The scalar factors of the elementary reflectors. !> WORK !> WORK is REAL array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> LWORK !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,M). !> For optimum performance LWORK >= M*NB, where NB is !> the optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> INFO !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Contributors: A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA Further Details: !> !> The N-by-N matrix Z can be computed by !> !> Z = Z(1)*Z(2)* ... *Z(M) !> !> where each N-by-N Z(k) is given by !> !> Z(k) = I - tau(k)*v(k)*v(k)**T !> !> with v(k) is the kth row vector of the M-by-N matrix !> !> V = ( I A(:,M+1:N) ) !> !> I is the M-by-M identity matrix, A(:,M+1:N) !> is the output stored in A on exit from STZRZF, !> and tau(k) is the kth element of the array TAU. !> !> Definition at line 150 of file stzrzf.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/stzrzf.f(3)