SRC/zunmhr.f(3) Library Functions Manual SRC/zunmhr.f(3) NAME SRC/zunmhr.f SYNOPSIS Functions/Subroutines subroutine zunmhr (side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc, work, lwork, info) ZUNMHR Function/Subroutine Documentation subroutine zunmhr (character side, character trans, integer m, integer n, integer ilo, integer ihi, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( * ) work, integer lwork, integer info) ZUNMHR Purpose: ZUNMHR overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'C': Q**H * C C * Q**H where Q is a complex unitary matrix of order nq, with nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of IHI-ILO elementary reflectors, as returned by ZGEHRD: Q = H(ilo) H(ilo+1) . . . H(ihi-1). Parameters SIDE SIDE is CHARACTER*1 = 'L': apply Q or Q**H from the Left; = 'R': apply Q or Q**H from the Right. TRANS TRANS is CHARACTER*1 = 'N': apply Q (No transpose) = 'C': apply Q**H (Conjugate transpose) M M is INTEGER The number of rows of the matrix C. M >= 0. N N is INTEGER The number of columns of the matrix C. N >= 0. ILO ILO is INTEGER IHI IHI is INTEGER ILO and IHI must have the same values as in the previous call of ZGEHRD. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi). If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and ILO = 1 and IHI = 0, if M = 0; if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and ILO = 1 and IHI = 0, if N = 0. A A is COMPLEX*16 array, dimension (LDA,M) if SIDE = 'L' (LDA,N) if SIDE = 'R' The vectors which define the elementary reflectors, as returned by ZGEHRD. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'. TAU TAU is COMPLEX*16 array, dimension (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by ZGEHRD. C C is COMPLEX*16 array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. LDC LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M). WORK WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 176 of file zunmhr.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/zunmhr.f(3)