.TH "SRC/zunmbr.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zunmbr.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzunmbr\fP (vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)" .br .RI "\fBZUNMBR\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zunmbr (character vect, character side, character trans, integer m, integer n, integer k, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( * ) work, integer lwork, integer info)" .PP \fBZUNMBR\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> If VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C !> with !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q * C C * Q !> TRANS = 'C': Q**H * C C * Q**H !> !> If VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix C !> with !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': P * C C * P !> TRANS = 'C': P**H * C C * P**H !> !> Here Q and P**H are the unitary matrices determined by ZGEBRD when !> reducing a complex matrix A to bidiagonal form: A = Q * B * P**H\&. Q !> and P**H are defined as products of elementary reflectors H(i) and !> G(i) respectively\&. !> !> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'\&. Thus nq is the !> order of the unitary matrix Q or P**H that is applied\&. !> !> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: !> if nq >= k, Q = H(1) H(2) \&. \&. \&. H(k); !> if nq < k, Q = H(1) H(2) \&. \&. \&. H(nq-1)\&. !> !> If VECT = 'P', A is assumed to have been a K-by-NQ matrix: !> if k < nq, P = G(1) G(2) \&. \&. \&. G(k); !> if k >= nq, P = G(1) G(2) \&. \&. \&. G(nq-1)\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIVECT\fP .PP .nf !> VECT is CHARACTER*1 !> = 'Q': apply Q or Q**H; !> = 'P': apply P or P**H\&. !> .fi .PP .br \fISIDE\fP .PP .nf !> SIDE is CHARACTER*1 !> = 'L': apply Q, Q**H, P or P**H from the Left; !> = 'R': apply Q, Q**H, P or P**H from the Right\&. !> .fi .PP .br \fITRANS\fP .PP .nf !> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q or P; !> = 'C': Conjugate transpose, apply Q**H or P**H\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix C\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix C\&. N >= 0\&. !> .fi .PP .br \fIK\fP .PP .nf !> K is INTEGER !> If VECT = 'Q', the number of columns in the original !> matrix reduced by ZGEBRD\&. !> If VECT = 'P', the number of rows in the original !> matrix reduced by ZGEBRD\&. !> K >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension !> (LDA,min(nq,K)) if VECT = 'Q' !> (LDA,nq) if VECT = 'P' !> The vectors which define the elementary reflectors H(i) and !> G(i), whose products determine the matrices Q and P, as !> returned by ZGEBRD\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. !> If VECT = 'Q', LDA >= max(1,nq); !> if VECT = 'P', LDA >= max(1,min(nq,K))\&. !> .fi .PP .br \fITAU\fP .PP .nf !> TAU is COMPLEX*16 array, dimension (min(nq,K)) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i) or G(i) which determines Q or P, as returned !> by ZGEBRD in the array argument TAUQ or TAUP\&. !> .fi .PP .br \fIC\fP .PP .nf !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N matrix C\&. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q !> or P*C or P**H*C or C*P or C*P**H\&. !> .fi .PP .br \fILDC\fP .PP .nf !> LDC is INTEGER !> The leading dimension of the array C\&. LDC >= max(1,M)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. !> If SIDE = 'L', LWORK >= max(1,N); !> if SIDE = 'R', LWORK >= max(1,M); !> if N = 0 or M = 0, LWORK >= 1\&. !> For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L', !> and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the !> optimal blocksize\&. (NB = 0 if M = 0 or N = 0\&.) !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB194\fP of file \fBzunmbr\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.