.TH "SRC/zungtsqr.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zungtsqr.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzungtsqr\fP (m, n, mb, nb, a, lda, t, ldt, work, lwork, info)" .br .RI "\fBZUNGTSQR\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zungtsqr (integer m, integer n, integer mb, integer nb, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldt, * ) t, integer ldt, complex*16, dimension( * ) work, integer lwork, integer info)" .PP \fBZUNGTSQR\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZUNGTSQR generates an M-by-N complex matrix Q_out with orthonormal !> columns, which are the first N columns of a product of comlpex unitary !> matrices of order M which are returned by ZLATSQR !> !> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * \&.\&.\&. * Q(k)_in )\&. !> !> See the documentation for ZLATSQR\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix A\&. M >= N >= 0\&. !> .fi .PP .br \fIMB\fP .PP .nf !> MB is INTEGER !> The row block size used by ZLATSQR to return !> arrays A and T\&. MB > N\&. !> (Note that if MB > M, then M is used instead of MB !> as the row block size)\&. !> .fi .PP .br \fINB\fP .PP .nf !> NB is INTEGER !> The column block size used by ZLATSQR to return !> arrays A and T\&. NB >= 1\&. !> (Note that if NB > N, then N is used instead of NB !> as the column block size)\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> !> On entry: !> !> The elements on and above the diagonal are not accessed\&. !> The elements below the diagonal represent the unit !> lower-trapezoidal blocked matrix V computed by ZLATSQR !> that defines the input matrices Q_in(k) (ones on the !> diagonal are not stored) (same format as the output A !> below the diagonal in ZLATSQR)\&. !> !> On exit: !> !> The array A contains an M-by-N orthonormal matrix Q_out, !> i\&.e the columns of A are orthogonal unit vectors\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fIT\fP .PP .nf !> T is COMPLEX*16 array, !> dimension (LDT, N * NIRB) !> where NIRB = Number_of_input_row_blocks !> = MAX( 1, CEIL((M-N)/(MB-N)) ) !> Let NICB = Number_of_input_col_blocks !> = CEIL(N/NB) !> !> The upper-triangular block reflectors used to define the !> input matrices Q_in(k), k=(1:NIRB*NICB)\&. The block !> reflectors are stored in compact form in NIRB block !> reflector sequences\&. Each of NIRB block reflector sequences !> is stored in a larger NB-by-N column block of T and consists !> of NICB smaller NB-by-NB upper-triangular column blocks\&. !> (same format as the output T in ZLATSQR)\&. !> .fi .PP .br \fILDT\fP .PP .nf !> LDT is INTEGER !> The leading dimension of the array T\&. !> LDT >= max(1,min(NB1,N))\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> (workspace) COMPLEX*16 array, dimension (MAX(2,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. LWORK >= (M+NB)*N\&. !> If LWORK = -1, then a workspace query is assumed\&. !> The routine only calculates the optimal size of the WORK !> array, returns this value as the first entry of the WORK !> array, and no error message related to LWORK is issued !> by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 .PP .nf !> !> November 2019, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !> .fi .PP .RE .PP .PP Definition at line \fB174\fP of file \fBzungtsqr\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.