SRC/ztrsna.f(3) Library Functions Manual SRC/ztrsna.f(3) NAME SRC/ztrsna.f SYNOPSIS Functions/Subroutines subroutine ztrsna (job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, s, sep, mm, m, work, ldwork, rwork, info) ZTRSNA Function/Subroutine Documentation subroutine ztrsna (character job, character howmny, logical, dimension( * ) select, integer n, complex*16, dimension( ldt, * ) t, integer ldt, complex*16, dimension( ldvl, * ) vl, integer ldvl, complex*16, dimension( ldvr, * ) vr, integer ldvr, double precision, dimension( * ) s, double precision, dimension( * ) sep, integer mm, integer m, complex*16, dimension( ldwork, * ) work, integer ldwork, double precision, dimension( * ) rwork, integer info) ZTRSNA Purpose: ZTRSNA estimates reciprocal condition numbers for specified eigenvalues and/or right eigenvectors of a complex upper triangular matrix T (or of any matrix Q*T*Q**H with Q unitary). Parameters JOB JOB is CHARACTER*1 Specifies whether condition numbers are required for eigenvalues (S) or eigenvectors (SEP): = 'E': for eigenvalues only (S); = 'V': for eigenvectors only (SEP); = 'B': for both eigenvalues and eigenvectors (S and SEP). HOWMNY HOWMNY is CHARACTER*1 = 'A': compute condition numbers for all eigenpairs; = 'S': compute condition numbers for selected eigenpairs specified by the array SELECT. SELECT SELECT is LOGICAL array, dimension (N) If HOWMNY = 'S', SELECT specifies the eigenpairs for which condition numbers are required. To select condition numbers for the j-th eigenpair, SELECT(j) must be set to .TRUE.. If HOWMNY = 'A', SELECT is not referenced. N N is INTEGER The order of the matrix T. N >= 0. T T is COMPLEX*16 array, dimension (LDT,N) The upper triangular matrix T. LDT LDT is INTEGER The leading dimension of the array T. LDT >= max(1,N). VL VL is COMPLEX*16 array, dimension (LDVL,M) If JOB = 'E' or 'B', VL must contain left eigenvectors of T (or of any Q*T*Q**H with Q unitary), corresponding to the eigenpairs specified by HOWMNY and SELECT. The eigenvectors must be stored in consecutive columns of VL, as returned by ZHSEIN or ZTREVC. If JOB = 'V', VL is not referenced. LDVL LDVL is INTEGER The leading dimension of the array VL. LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N. VR VR is COMPLEX*16 array, dimension (LDVR,M) If JOB = 'E' or 'B', VR must contain right eigenvectors of T (or of any Q*T*Q**H with Q unitary), corresponding to the eigenpairs specified by HOWMNY and SELECT. The eigenvectors must be stored in consecutive columns of VR, as returned by ZHSEIN or ZTREVC. If JOB = 'V', VR is not referenced. LDVR LDVR is INTEGER The leading dimension of the array VR. LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N. S S is DOUBLE PRECISION array, dimension (MM) If JOB = 'E' or 'B', the reciprocal condition numbers of the selected eigenvalues, stored in consecutive elements of the array. Thus S(j), SEP(j), and the j-th columns of VL and VR all correspond to the same eigenpair (but not in general the j-th eigenpair, unless all eigenpairs are selected). If JOB = 'V', S is not referenced. SEP SEP is DOUBLE PRECISION array, dimension (MM) If JOB = 'V' or 'B', the estimated reciprocal condition numbers of the selected eigenvectors, stored in consecutive elements of the array. If JOB = 'E', SEP is not referenced. MM MM is INTEGER The number of elements in the arrays S (if JOB = 'E' or 'B') and/or SEP (if JOB = 'V' or 'B'). MM >= M. M M is INTEGER The number of elements of the arrays S and/or SEP actually used to store the estimated condition numbers. If HOWMNY = 'A', M is set to N. WORK WORK is COMPLEX*16 array, dimension (LDWORK,N+6) If JOB = 'E', WORK is not referenced. LDWORK LDWORK is INTEGER The leading dimension of the array WORK. LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N. RWORK RWORK is DOUBLE PRECISION array, dimension (N) If JOB = 'E', RWORK is not referenced. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: The reciprocal of the condition number of an eigenvalue lambda is defined as S(lambda) = |v**H*u| / (norm(u)*norm(v)) where u and v are the right and left eigenvectors of T corresponding to lambda; v**H denotes the conjugate transpose of v, and norm(u) denotes the Euclidean norm. These reciprocal condition numbers always lie between zero (very badly conditioned) and one (very well conditioned). If n = 1, S(lambda) is defined to be 1. An approximate error bound for a computed eigenvalue W(i) is given by EPS * norm(T) / S(i) where EPS is the machine precision. The reciprocal of the condition number of the right eigenvector u corresponding to lambda is defined as follows. Suppose T = ( lambda c ) ( 0 T22 ) Then the reciprocal condition number is SEP( lambda, T22 ) = sigma-min( T22 - lambda*I ) where sigma-min denotes the smallest singular value. We approximate the smallest singular value by the reciprocal of an estimate of the one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is defined to be abs(T(1,1)). An approximate error bound for a computed right eigenvector VR(i) is given by EPS * norm(T) / SEP(i) Definition at line 246 of file ztrsna.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/ztrsna.f(3)