TESTING/LIN/ztpt01.f(3) | Library Functions Manual | TESTING/LIN/ztpt01.f(3) |
NAME
TESTING/LIN/ztpt01.f
SYNOPSIS
Functions/Subroutines
subroutine ztpt01 (uplo, diag, n, ap, ainvp, rcond, rwork,
resid)
ZTPT01
Function/Subroutine Documentation
subroutine ztpt01 (character uplo, character diag, integer n, complex*16, dimension( * ) ap, complex*16, dimension( * ) ainvp, double precision rcond, double precision, dimension( * ) rwork, double precision resid)
ZTPT01
Purpose:
ZTPT01 computes the residual for a triangular matrix A times its inverse when A is stored in packed format: RESID = norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ), where EPS is the machine epsilon.
Parameters
UPLO
UPLO is CHARACTER*1 Specifies whether the matrix A is upper or lower triangular. = 'U': Upper triangular = 'L': Lower triangular
DIAG
DIAG is CHARACTER*1 Specifies whether or not the matrix A is unit triangular. = 'N': Non-unit triangular = 'U': Unit triangular
N
N is INTEGER The order of the matrix A. N >= 0.
AP
AP is COMPLEX*16 array, dimension (N*(N+1)/2) The original upper or lower triangular matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
AINVP
AINVP is COMPLEX*16 array, dimension (N*(N+1)/2) On entry, the (triangular) inverse of the matrix A, packed columnwise in a linear array as in AP. On exit, the contents of AINVP are destroyed.
RCOND
RCOND is DOUBLE PRECISION The reciprocal condition number of A, computed as 1/(norm(A) * norm(AINV)).
RWORK
RWORK is DOUBLE PRECISION array, dimension (N)
RESID
RESID is DOUBLE PRECISION norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 108 of file ztpt01.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |