.TH "SRC/ztpqrt.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/ztpqrt.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBztpqrt\fP (m, n, l, nb, a, lda, b, ldb, t, ldt, work, info)" .br .RI "\fBZTPQRT\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine ztpqrt (integer m, integer n, integer l, integer nb, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldt, * ) t, integer ldt, complex*16, dimension( * ) work, integer info)" .PP \fBZTPQRT\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZTPQRT computes a blocked QR factorization of a complex !> matrix C, which is composed of a !> triangular block A and pentagonal block B, using the compact !> WY representation for Q\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix B\&. !> M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix B, and the order of the !> triangular matrix A\&. !> N >= 0\&. !> .fi .PP .br \fIL\fP .PP .nf !> L is INTEGER !> The number of rows of the upper trapezoidal part of B\&. !> MIN(M,N) >= L >= 0\&. See Further Details\&. !> .fi .PP .br \fINB\fP .PP .nf !> NB is INTEGER !> The block size to be used in the blocked QR\&. N >= NB >= 1\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the upper triangular N-by-N matrix A\&. !> On exit, the elements on and above the diagonal of the array !> contain the upper triangular matrix R\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB,N) !> On entry, the pentagonal M-by-N matrix B\&. The first M-L rows !> are rectangular, and the last L rows are upper trapezoidal\&. !> On exit, B contains the pentagonal matrix V\&. See Further Details\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,M)\&. !> .fi .PP .br \fIT\fP .PP .nf !> T is COMPLEX*16 array, dimension (LDT,N) !> The upper triangular block reflectors stored in compact form !> as a sequence of upper triangular blocks\&. See Further Details\&. !> .fi .PP .br \fILDT\fP .PP .nf !> LDT is INTEGER !> The leading dimension of the array T\&. LDT >= NB\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (NB*N) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The input matrix C is a (N+M)-by-N matrix !> !> C = [ A ] !> [ B ] !> !> where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal !> matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N !> upper trapezoidal matrix B2: !> !> B = [ B1 ] <- (M-L)-by-N rectangular !> [ B2 ] <- L-by-N upper trapezoidal\&. !> !> The upper trapezoidal matrix B2 consists of the first L rows of a !> N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N)\&. If L=0, !> B is rectangular M-by-N; if M=L=N, B is upper triangular\&. !> !> The matrix W stores the elementary reflectors H(i) in the i-th column !> below the diagonal (of A) in the (N+M)-by-N input matrix C !> !> C = [ A ] <- upper triangular N-by-N !> [ B ] <- M-by-N pentagonal !> !> so that W can be represented as !> !> W = [ I ] <- identity, N-by-N !> [ V ] <- M-by-N, same form as B\&. !> !> Thus, all of information needed for W is contained on exit in B, which !> we call V above\&. Note that V has the same form as B; that is, !> !> V = [ V1 ] <- (M-L)-by-N rectangular !> [ V2 ] <- L-by-N upper trapezoidal\&. !> !> The columns of V represent the vectors which define the H(i)'s\&. !> !> The number of blocks is B = ceiling(N/NB), where each !> block is of order NB except for the last block, which is of order !> IB = N - (B-1)*NB\&. For each of the B blocks, a upper triangular block !> reflector factor is computed: T1, T2, \&.\&.\&., TB\&. The NB-by-NB (and IB-by-IB !> for the last block) T's are stored in the NB-by-N matrix T as !> !> T = [T1 T2 \&.\&.\&. TB]\&. !> .fi .PP .RE .PP .PP Definition at line \fB187\fP of file \fBztpqrt\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.