.TH "SRC/ztgexc.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/ztgexc.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBztgexc\fP (wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, info)" .br .RI "\fBZTGEXC\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine ztgexc (logical wantq, logical wantz, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldq, * ) q, integer ldq, complex*16, dimension( ldz, * ) z, integer ldz, integer ifst, integer ilst, integer info)" .PP \fBZTGEXC\fP .PP \fBPurpose:\fP .RS 4 .PP .nf ZTGEXC reorders the generalized Schur decomposition of a complex matrix pair (A,B), using an unitary equivalence transformation (A, B) := Q * (A, B) * Z**H, so that the diagonal block of (A, B) with row index IFST is moved to row ILST\&. (A, B) must be in generalized Schur canonical form, that is, A and B are both upper triangular\&. Optionally, the matrices Q and Z of generalized Schur vectors are updated\&. Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIWANTQ\fP .PP .nf WANTQ is LOGICAL \&.TRUE\&. : update the left transformation matrix Q; \&.FALSE\&.: do not update Q\&. .fi .PP .br \fIWANTZ\fP .PP .nf WANTZ is LOGICAL \&.TRUE\&. : update the right transformation matrix Z; \&.FALSE\&.: do not update Z\&. .fi .PP .br \fIN\fP .PP .nf N is INTEGER The order of the matrices A and B\&. N >= 0\&. .fi .PP .br \fIA\fP .PP .nf A is COMPLEX*16 array, dimension (LDA,N) On entry, the upper triangular matrix A in the pair (A, B)\&. On exit, the updated matrix A\&. .fi .PP .br \fILDA\fP .PP .nf LDA is INTEGER The leading dimension of the array A\&. LDA >= max(1,N)\&. .fi .PP .br \fIB\fP .PP .nf B is COMPLEX*16 array, dimension (LDB,N) On entry, the upper triangular matrix B in the pair (A, B)\&. On exit, the updated matrix B\&. .fi .PP .br \fILDB\fP .PP .nf LDB is INTEGER The leading dimension of the array B\&. LDB >= max(1,N)\&. .fi .PP .br \fIQ\fP .PP .nf Q is COMPLEX*16 array, dimension (LDQ,N) On entry, if WANTQ = \&.TRUE\&., the unitary matrix Q\&. On exit, the updated matrix Q\&. If WANTQ = \&.FALSE\&., Q is not referenced\&. .fi .PP .br \fILDQ\fP .PP .nf LDQ is INTEGER The leading dimension of the array Q\&. LDQ >= 1; If WANTQ = \&.TRUE\&., LDQ >= N\&. .fi .PP .br \fIZ\fP .PP .nf Z is COMPLEX*16 array, dimension (LDZ,N) On entry, if WANTZ = \&.TRUE\&., the unitary matrix Z\&. On exit, the updated matrix Z\&. If WANTZ = \&.FALSE\&., Z is not referenced\&. .fi .PP .br \fILDZ\fP .PP .nf LDZ is INTEGER The leading dimension of the array Z\&. LDZ >= 1; If WANTZ = \&.TRUE\&., LDZ >= N\&. .fi .PP .br \fIIFST\fP .PP .nf IFST is INTEGER .fi .PP .br \fIILST\fP .PP .nf ILST is INTEGER Specify the reordering of the diagonal blocks of (A, B)\&. The block with row index IFST is moved to row ILST, by a sequence of swapping between adjacent blocks\&. .fi .PP .br \fIINFO\fP .PP .nf INFO is INTEGER =0: Successful exit\&. <0: if INFO = -i, the i-th argument had an illegal value\&. =1: The transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is ill- conditioned\&. (A, B) may have been partially reordered, and ILST points to the first row of the current position of the block being moved\&. .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden\&. .RE .PP \fBReferences:\fP .RS 4 [1] B\&. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M\&.S\&. Moonen et al (eds), Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publ\&. 1993, pp 195-218\&. .br [2] B\&. Kagstrom and P\&. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF - 94\&.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994\&. Also as LAPACK Working Note 87\&. To appear in Numerical Algorithms, 1996\&. .br [3] B\&. Kagstrom and P\&. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93\&.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK working Note 75\&. To appear in ACM Trans\&. on Math\&. Software, Vol 22, No 1, 1996\&. .RE .PP .PP Definition at line \fB198\fP of file \fBztgexc\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.