.TH "TESTING/EIG/zstt22.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/EIG/zstt22.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzstt22\fP (n, m, kband, ad, ae, sd, se, u, ldu, work, ldwork, rwork, result)" .br .RI "\fBZSTT22\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zstt22 (integer n, integer m, integer kband, double precision, dimension( * ) ad, double precision, dimension( * ) ae, double precision, dimension( * ) sd, double precision, dimension( * ) se, complex*16, dimension( ldu, * ) u, integer ldu, complex*16, dimension( ldwork, * ) work, integer ldwork, double precision, dimension( * ) rwork, double precision, dimension( 2 ) result)" .PP \fBZSTT22\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZSTT22 checks a set of M eigenvalues and eigenvectors, !> !> A U = U S !> !> where A is Hermitian tridiagonal, the columns of U are unitary, !> and S is diagonal (if KBAND=0) or Hermitian tridiagonal (if KBAND=1)\&. !> Two tests are performed: !> !> RESULT(1) = | U* A U - S | / ( |A| m ulp ) !> !> RESULT(2) = | I - U*U | / ( m ulp ) !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf !> N is INTEGER !> The size of the matrix\&. If it is zero, ZSTT22 does nothing\&. !> It must be at least zero\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The number of eigenpairs to check\&. If it is zero, ZSTT22 !> does nothing\&. It must be at least zero\&. !> .fi .PP .br \fIKBAND\fP .PP .nf !> KBAND is INTEGER !> The bandwidth of the matrix S\&. It may only be zero or one\&. !> If zero, then S is diagonal, and SE is not referenced\&. If !> one, then S is Hermitian tri-diagonal\&. !> .fi .PP .br \fIAD\fP .PP .nf !> AD is DOUBLE PRECISION array, dimension (N) !> The diagonal of the original (unfactored) matrix A\&. A is !> assumed to be Hermitian tridiagonal\&. !> .fi .PP .br \fIAE\fP .PP .nf !> AE is DOUBLE PRECISION array, dimension (N) !> The off-diagonal of the original (unfactored) matrix A\&. A !> is assumed to be Hermitian tridiagonal\&. AE(1) is ignored, !> AE(2) is the (1,2) and (2,1) element, etc\&. !> .fi .PP .br \fISD\fP .PP .nf !> SD is DOUBLE PRECISION array, dimension (N) !> The diagonal of the (Hermitian tri-) diagonal matrix S\&. !> .fi .PP .br \fISE\fP .PP .nf !> SE is DOUBLE PRECISION array, dimension (N) !> The off-diagonal of the (Hermitian tri-) diagonal matrix S\&. !> Not referenced if KBSND=0\&. If KBAND=1, then AE(1) is !> ignored, SE(2) is the (1,2) and (2,1) element, etc\&. !> .fi .PP .br \fIU\fP .PP .nf !> U is DOUBLE PRECISION array, dimension (LDU, N) !> The unitary matrix in the decomposition\&. !> .fi .PP .br \fILDU\fP .PP .nf !> LDU is INTEGER !> The leading dimension of U\&. LDU must be at least N\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (LDWORK, M+1) !> .fi .PP .br \fILDWORK\fP .PP .nf !> LDWORK is INTEGER !> The leading dimension of WORK\&. LDWORK must be at least !> max(1,M)\&. !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (N) !> .fi .PP .br \fIRESULT\fP .PP .nf !> RESULT is DOUBLE PRECISION array, dimension (2) !> The values computed by the two tests described above\&. The !> values are currently limited to 1/ulp, to avoid overflow\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB143\fP of file \fBzstt22\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.