TESTING/EIG/zsgt01.f(3) Library Functions Manual TESTING/EIG/zsgt01.f(3) NAME TESTING/EIG/zsgt01.f SYNOPSIS Functions/Subroutines subroutine zsgt01 (itype, uplo, n, m, a, lda, b, ldb, z, ldz, d, work, rwork, result) ZSGT01 Function/Subroutine Documentation subroutine zsgt01 (integer itype, character uplo, integer n, integer m, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) d, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, double precision, dimension( * ) result) ZSGT01 Purpose: !> !> CDGT01 checks a decomposition of the form !> !> A Z = B Z D or !> A B Z = Z D or !> B A Z = Z D !> !> where A is a Hermitian matrix, B is Hermitian positive definite, !> Z is unitary, and D is diagonal. !> !> One of the following test ratios is computed: !> !> ITYPE = 1: RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp ) !> !> ITYPE = 2: RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp ) !> !> ITYPE = 3: RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp ) !> Parameters ITYPE !> ITYPE is INTEGER !> The form of the Hermitian generalized eigenproblem. !> = 1: A*z = (lambda)*B*z !> = 2: A*B*z = (lambda)*z !> = 3: B*A*z = (lambda)*z !> UPLO !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrices A and B is stored. !> = 'U': Upper triangular !> = 'L': Lower triangular !> N !> N is INTEGER !> The order of the matrix A. N >= 0. !> M !> M is INTEGER !> The number of eigenvalues found. M >= 0. !> A !> A is COMPLEX*16 array, dimension (LDA, N) !> The original Hermitian matrix A. !> LDA !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> B !> B is COMPLEX*16 array, dimension (LDB, N) !> The original Hermitian positive definite matrix B. !> LDB !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> Z !> Z is COMPLEX*16 array, dimension (LDZ, M) !> The computed eigenvectors of the generalized eigenproblem. !> LDZ !> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= max(1,N). !> D !> D is DOUBLE PRECISION array, dimension (M) !> The computed eigenvalues of the generalized eigenproblem. !> WORK !> WORK is COMPLEX*16 array, dimension (N*N) !> RWORK !> RWORK is DOUBLE PRECISION array, dimension (N) !> RESULT !> RESULT is DOUBLE PRECISION array, dimension (1) !> The test ratio as described above. !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 150 of file zsgt01.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 TESTING/EIG/zsgt01.f(3)