.TH "TESTING/EIG/zsgt01.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/EIG/zsgt01.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzsgt01\fP (itype, uplo, n, m, a, lda, b, ldb, z, ldz, d, work, rwork, result)" .br .RI "\fBZSGT01\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zsgt01 (integer itype, character uplo, integer n, integer m, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldz, * ) z, integer ldz, double precision, dimension( * ) d, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, double precision, dimension( * ) result)" .PP \fBZSGT01\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> CDGT01 checks a decomposition of the form !> !> A Z = B Z D or !> A B Z = Z D or !> B A Z = Z D !> !> where A is a Hermitian matrix, B is Hermitian positive definite, !> Z is unitary, and D is diagonal\&. !> !> One of the following test ratios is computed: !> !> ITYPE = 1: RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp ) !> !> ITYPE = 2: RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp ) !> !> ITYPE = 3: RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp ) !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIITYPE\fP .PP .nf !> ITYPE is INTEGER !> The form of the Hermitian generalized eigenproblem\&. !> = 1: A*z = (lambda)*B*z !> = 2: A*B*z = (lambda)*z !> = 3: B*A*z = (lambda)*z !> .fi .PP .br \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrices A and B is stored\&. !> = 'U': Upper triangular !> = 'L': Lower triangular !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The number of eigenvalues found\&. M >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA, N) !> The original Hermitian matrix A\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB, N) !> The original Hermitian positive definite matrix B\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIZ\fP .PP .nf !> Z is COMPLEX*16 array, dimension (LDZ, M) !> The computed eigenvectors of the generalized eigenproblem\&. !> .fi .PP .br \fILDZ\fP .PP .nf !> LDZ is INTEGER !> The leading dimension of the array Z\&. LDZ >= max(1,N)\&. !> .fi .PP .br \fID\fP .PP .nf !> D is DOUBLE PRECISION array, dimension (M) !> The computed eigenvalues of the generalized eigenproblem\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (N*N) !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (N) !> .fi .PP .br \fIRESULT\fP .PP .nf !> RESULT is DOUBLE PRECISION array, dimension (1) !> The test ratio as described above\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB150\fP of file \fBzsgt01\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.