TESTING/LIN/zrqt03.f(3) | Library Functions Manual | TESTING/LIN/zrqt03.f(3) |
NAME
TESTING/LIN/zrqt03.f
SYNOPSIS
Functions/Subroutines
subroutine zrqt03 (m, n, k, af, c, cc, q, lda, tau, work,
lwork, rwork, result)
ZRQT03
Function/Subroutine Documentation
subroutine zrqt03 (integer m, integer n, integer k, complex*16, dimension( lda, * ) af, complex*16, dimension( lda, * ) c, complex*16, dimension( lda, * ) cc, complex*16, dimension( lda, * ) q, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( * ) result)
ZRQT03
Purpose:
!> !> ZRQT03 tests ZUNMRQ, which computes Q*C, Q'*C, C*Q or C*Q'. !> !> ZRQT03 compares the results of a call to ZUNMRQ with the results of !> forming Q explicitly by a call to ZUNGRQ and then performing matrix !> multiplication by a call to ZGEMM. !>
Parameters
M
!> M is INTEGER !> The number of rows or columns of the matrix C; C is n-by-m if !> Q is applied from the left, or m-by-n if Q is applied from !> the right. M >= 0. !>
N
!> N is INTEGER !> The order of the orthogonal matrix Q. N >= 0. !>
K
!> K is INTEGER !> The number of elementary reflectors whose product defines the !> orthogonal matrix Q. N >= K >= 0. !>
AF
!> AF is COMPLEX*16 array, dimension (LDA,N) !> Details of the RQ factorization of an m-by-n matrix, as !> returned by ZGERQF. See CGERQF for further details. !>
C
!> C is COMPLEX*16 array, dimension (LDA,N) !>
CC
!> CC is COMPLEX*16 array, dimension (LDA,N) !>
Q
!> Q is COMPLEX*16 array, dimension (LDA,N) !>
LDA
!> LDA is INTEGER !> The leading dimension of the arrays AF, C, CC, and Q. !>
TAU
!> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors corresponding !> to the RQ factorization in AF. !>
WORK
!> WORK is COMPLEX*16 array, dimension (LWORK) !>
LWORK
!> LWORK is INTEGER !> The length of WORK. LWORK must be at least M, and should be !> M*NB, where NB is the blocksize for this environment. !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (M) !>
RESULT
!> RESULT is DOUBLE PRECISION array, dimension (4) !> The test ratios compare two techniques for multiplying a !> random matrix C by an n-by-n orthogonal matrix Q. !> RESULT(1) = norm( Q*C - Q*C ) / ( N * norm(C) * EPS ) !> RESULT(2) = norm( C*Q - C*Q ) / ( N * norm(C) * EPS ) !> RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS ) !> RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS ) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 134 of file zrqt03.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |