.TH "TESTING/LIN/zrqt02.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/LIN/zrqt02.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzrqt02\fP (m, n, k, a, af, q, r, lda, tau, work, lwork, rwork, result)" .br .RI "\fBZRQT02\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zrqt02 (integer m, integer n, integer k, complex*16, dimension( lda, * ) a, complex*16, dimension( lda, * ) af, complex*16, dimension( lda, * ) q, complex*16, dimension( lda, * ) r, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( * ) result)" .PP \fBZRQT02\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZRQT02 tests ZUNGRQ, which generates an m-by-n matrix Q with !> orthonormal rows that is defined as the product of k elementary !> reflectors\&. !> !> Given the RQ factorization of an m-by-n matrix A, ZRQT02 generates !> the orthogonal matrix Q defined by the factorization of the last k !> rows of A; it compares R(m-k+1:m,n-m+1:n) with !> A(m-k+1:m,1:n)*Q(n-m+1:n,1:n)', and checks that the rows of Q are !> orthonormal\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix Q to be generated\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix Q to be generated\&. !> N >= M >= 0\&. !> .fi .PP .br \fIK\fP .PP .nf !> K is INTEGER !> The number of elementary reflectors whose product defines the !> matrix Q\&. M >= K >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> The m-by-n matrix A which was factorized by ZRQT01\&. !> .fi .PP .br \fIAF\fP .PP .nf !> AF is COMPLEX*16 array, dimension (LDA,N) !> Details of the RQ factorization of A, as returned by ZGERQF\&. !> See ZGERQF for further details\&. !> .fi .PP .br \fIQ\fP .PP .nf !> Q is COMPLEX*16 array, dimension (LDA,N) !> .fi .PP .br \fIR\fP .PP .nf !> R is COMPLEX*16 array, dimension (LDA,M) !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the arrays A, AF, Q and L\&. LDA >= N\&. !> .fi .PP .br \fITAU\fP .PP .nf !> TAU is COMPLEX*16 array, dimension (M) !> The scalar factors of the elementary reflectors corresponding !> to the RQ factorization in AF\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (LWORK) !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (M) !> .fi .PP .br \fIRESULT\fP .PP .nf !> RESULT is DOUBLE PRECISION array, dimension (2) !> The test ratios: !> RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS ) !> RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB134\fP of file \fBzrqt02\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.