TESTING/LIN/zrqt01.f(3) Library Functions Manual TESTING/LIN/zrqt01.f(3) NAME TESTING/LIN/zrqt01.f SYNOPSIS Functions/Subroutines subroutine zrqt01 (m, n, a, af, q, r, lda, tau, work, lwork, rwork, result) ZRQT01 Function/Subroutine Documentation subroutine zrqt01 (integer m, integer n, complex*16, dimension( lda, * ) a, complex*16, dimension( lda, * ) af, complex*16, dimension( lda, * ) q, complex*16, dimension( lda, * ) r, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( * ) result) ZRQT01 Purpose: !> !> ZRQT01 tests ZGERQF, which computes the RQ factorization of an m-by-n !> matrix A, and partially tests ZUNGRQ which forms the n-by-n !> orthogonal matrix Q. !> !> ZRQT01 compares R with A*Q', and checks that Q is orthogonal. !> Parameters M !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> N !> N is INTEGER !> The number of columns of the matrix A. N >= 0. !> A !> A is COMPLEX*16 array, dimension (LDA,N) !> The m-by-n matrix A. !> AF !> AF is COMPLEX*16 array, dimension (LDA,N) !> Details of the RQ factorization of A, as returned by ZGERQF. !> See ZGERQF for further details. !> Q !> Q is COMPLEX*16 array, dimension (LDA,N) !> The n-by-n orthogonal matrix Q. !> R !> R is COMPLEX*16 array, dimension (LDA,max(M,N)) !> LDA !> LDA is INTEGER !> The leading dimension of the arrays A, AF, Q and L. !> LDA >= max(M,N). !> TAU !> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors, as returned !> by ZGERQF. !> WORK !> WORK is COMPLEX*16 array, dimension (LWORK) !> LWORK !> LWORK is INTEGER !> The dimension of the array WORK. !> RWORK !> RWORK is DOUBLE PRECISION array, dimension (max(M,N)) !> RESULT !> RESULT is DOUBLE PRECISION array, dimension (2) !> The test ratios: !> RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS ) !> RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 124 of file zrqt01.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 TESTING/LIN/zrqt01.f(3)