BLAS/SRC/zrotg.f90(3) Library Functions Manual BLAS/SRC/zrotg.f90(3) NAME BLAS/SRC/zrotg.f90 SYNOPSIS Functions/Subroutines subroutine zrotg (a, b, c, s) ZROTG generates a Givens rotation with real cosine and complex sine. Function/Subroutine Documentation subroutine zrotg (complex(wp) a, complex(wp) b, real(wp) c, complex(wp) s) ZROTG generates a Givens rotation with real cosine and complex sine. Purpose: !> !> ZROTG constructs a plane rotation !> [ c s ] [ a ] = [ r ] !> [ -conjg(s) c ] [ b ] [ 0 ] !> where c is real, s is complex, and c**2 + conjg(s)*s = 1. !> !> The computation uses the formulas !> |x| = sqrt( Re(x)**2 + Im(x)**2 ) !> sgn(x) = x / |x| if x /= 0 !> = 1 if x = 0 !> c = |a| / sqrt(|a|**2 + |b|**2) !> s = sgn(a) * conjg(b) / sqrt(|a|**2 + |b|**2) !> r = sgn(a)*sqrt(|a|**2 + |b|**2) !> When a and b are real and r /= 0, the formulas simplify to !> c = a / r !> s = b / r !> the same as in DROTG when |a| > |b|. When |b| >= |a|, the !> sign of c and s will be different from those computed by DROTG !> if the signs of a and b are not the same. !> !> See also lartg: generate plane rotation, more accurate than BLAS rot, lartgp: generate plane rotation, more accurate than BLAS rot Parameters A !> A is DOUBLE COMPLEX !> On entry, the scalar a. !> On exit, the scalar r. !> B !> B is DOUBLE COMPLEX !> The scalar b. !> C !> C is DOUBLE PRECISION !> The scalar c. !> S !> S is DOUBLE COMPLEX !> The scalar s. !> Author Weslley Pereira, University of Colorado Denver, USA Date December 2021 Further Details: !> !> Based on the algorithm from !> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !> Definition at line 88 of file zrotg.f90. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 BLAS/SRC/zrotg.f90(3)