TESTING/LIN/zqrt14.f(3) Library Functions Manual TESTING/LIN/zqrt14.f(3) NAME TESTING/LIN/zqrt14.f SYNOPSIS Functions/Subroutines double precision function zqrt14 (trans, m, n, nrhs, a, lda, x, ldx, work, lwork) ZQRT14 Function/Subroutine Documentation double precision function zqrt14 (character trans, integer m, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldx, * ) x, integer ldx, complex*16, dimension( lwork ) work, integer lwork) ZQRT14 Purpose: !> !> ZQRT14 checks whether X is in the row space of A or A'. It does so !> by scaling both X and A such that their norms are in the range !> [sqrt(eps), 1/sqrt(eps)], then computing a QR factorization of [A,X] !> (if TRANS = 'C') or an LQ factorization of [A',X]' (if TRANS = 'N'), !> and returning the norm of the trailing triangle, scaled by !> MAX(M,N,NRHS)*eps. !> Parameters TRANS !> TRANS is CHARACTER*1 !> = 'N': No transpose, check for X in the row space of A !> = 'C': Conjugate transpose, check for X in row space of A'. !> M !> M is INTEGER !> The number of rows of the matrix A. !> N !> N is INTEGER !> The number of columns of the matrix A. !> NRHS !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of X. !> A !> A is COMPLEX*16 array, dimension (LDA,N) !> The M-by-N matrix A. !> LDA !> LDA is INTEGER !> The leading dimension of the array A. !> X !> X is COMPLEX*16 array, dimension (LDX,NRHS) !> If TRANS = 'N', the N-by-NRHS matrix X. !> IF TRANS = 'C', the M-by-NRHS matrix X. !> LDX !> LDX is INTEGER !> The leading dimension of the array X. !> WORK !> WORK is COMPLEX*16 array dimension (LWORK) !> LWORK !> LWORK is INTEGER !> length of workspace array required !> If TRANS = 'N', LWORK >= (M+NRHS)*(N+2); !> if TRANS = 'C', LWORK >= (N+NRHS)*(M+2). !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 114 of file zqrt14.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 TESTING/LIN/zqrt14.f(3)