TESTING/LIN/zqrt01p.f(3) Library Functions Manual TESTING/LIN/zqrt01p.f(3) NAME TESTING/LIN/zqrt01p.f SYNOPSIS Functions/Subroutines subroutine zqrt01p (m, n, a, af, q, r, lda, tau, work, lwork, rwork, result) ZQRT01P Function/Subroutine Documentation subroutine zqrt01p (integer m, integer n, complex*16, dimension( lda, * ) a, complex*16, dimension( lda, * ) af, complex*16, dimension( lda, * ) q, complex*16, dimension( lda, * ) r, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( * ) result) ZQRT01P Purpose: !> !> ZQRT01P tests ZGEQRFP, which computes the QR factorization of an m-by-n !> matrix A, and partially tests ZUNGQR which forms the m-by-m !> orthogonal matrix Q. !> !> ZQRT01P compares R with Q'*A, and checks that Q is orthogonal. !> Parameters M !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> N !> N is INTEGER !> The number of columns of the matrix A. N >= 0. !> A !> A is COMPLEX*16 array, dimension (LDA,N) !> The m-by-n matrix A. !> AF !> AF is COMPLEX*16 array, dimension (LDA,N) !> Details of the QR factorization of A, as returned by ZGEQRFP. !> See ZGEQRFP for further details. !> Q !> Q is COMPLEX*16 array, dimension (LDA,M) !> The m-by-m orthogonal matrix Q. !> R !> R is COMPLEX*16 array, dimension (LDA,max(M,N)) !> LDA !> LDA is INTEGER !> The leading dimension of the arrays A, AF, Q and R. !> LDA >= max(M,N). !> TAU !> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors, as returned !> by ZGEQRFP. !> WORK !> WORK is COMPLEX*16 array, dimension (LWORK) !> LWORK !> LWORK is INTEGER !> The dimension of the array WORK. !> RWORK !> RWORK is DOUBLE PRECISION array, dimension (M) !> RESULT !> RESULT is DOUBLE PRECISION array, dimension (2) !> The test ratios: !> RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS ) !> RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 124 of file zqrt01p.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 TESTING/LIN/zqrt01p.f(3)