TESTING/LIN/zqrt01.f(3) | Library Functions Manual | TESTING/LIN/zqrt01.f(3) |
NAME
TESTING/LIN/zqrt01.f
SYNOPSIS
Functions/Subroutines
subroutine zqrt01 (m, n, a, af, q, r, lda, tau, work,
lwork, rwork, result)
ZQRT01
Function/Subroutine Documentation
subroutine zqrt01 (integer m, integer n, complex*16, dimension( lda, * ) a, complex*16, dimension( lda, * ) af, complex*16, dimension( lda, * ) q, complex*16, dimension( lda, * ) r, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( * ) result)
ZQRT01
Purpose:
!> !> ZQRT01 tests ZGEQRF, which computes the QR factorization of an m-by-n !> matrix A, and partially tests ZUNGQR which forms the m-by-m !> orthogonal matrix Q. !> !> ZQRT01 compares R with Q'*A, and checks that Q is orthogonal. !>
Parameters
M
!> M is INTEGER !> The number of rows of the matrix A. M >= 0. !>
N
!> N is INTEGER !> The number of columns of the matrix A. N >= 0. !>
A
!> A is COMPLEX*16 array, dimension (LDA,N) !> The m-by-n matrix A. !>
AF
!> AF is COMPLEX*16 array, dimension (LDA,N) !> Details of the QR factorization of A, as returned by ZGEQRF. !> See ZGEQRF for further details. !>
Q
!> Q is COMPLEX*16 array, dimension (LDA,M) !> The m-by-m orthogonal matrix Q. !>
R
!> R is COMPLEX*16 array, dimension (LDA,max(M,N)) !>
LDA
!> LDA is INTEGER !> The leading dimension of the arrays A, AF, Q and R. !> LDA >= max(M,N). !>
TAU
!> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors, as returned !> by ZGEQRF. !>
WORK
!> WORK is COMPLEX*16 array, dimension (LWORK) !>
LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !>
RWORK
!> RWORK is DOUBLE PRECISION array, dimension (M) !>
RESULT
!> RESULT is DOUBLE PRECISION array, dimension (2) !> The test ratios: !> RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS ) !> RESULT(2) = norm( I - Q'*Q ) / ( M * EPS ) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 124 of file zqrt01.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |