TESTING/LIN/zqpt01.f(3) | Library Functions Manual | TESTING/LIN/zqpt01.f(3) |
NAME
TESTING/LIN/zqpt01.f
SYNOPSIS
Functions/Subroutines
double precision function zqpt01 (m, n, k, a, af, lda, tau,
jpvt, work, lwork)
ZQPT01
Function/Subroutine Documentation
double precision function zqpt01 (integer m, integer n, integer k, complex*16, dimension( lda, * ) a, complex*16, dimension( lda, * ) af, integer lda, complex*16, dimension( * ) tau, integer, dimension( * ) jpvt, complex*16, dimension( lwork ) work, integer lwork)
ZQPT01
Purpose:
!> !> ZQPT01 tests the QR-factorization with pivoting of a matrix A. The !> array AF contains the (possibly partial) QR-factorization of A, where !> the upper triangle of AF(1:k,1:k) is a partial triangular factor, !> the entries below the diagonal in the first k columns are the !> Householder vectors, and the rest of AF contains a partially updated !> matrix. !> !> This function returns ||A*P - Q*R|| / ( ||norm(A)||*eps*max(M,N) ) !>
Parameters
M
!> M is INTEGER !> The number of rows of the matrices A and AF. !>
N
!> N is INTEGER !> The number of columns of the matrices A and AF. !>
K
!> K is INTEGER !> The number of columns of AF that have been reduced !> to upper triangular form. !>
A
!> A is COMPLEX*16 array, dimension (LDA, N) !> The original matrix A. !>
AF
!> AF is COMPLEX*16 array, dimension (LDA,N) !> The (possibly partial) output of ZGEQPF. The upper triangle !> of AF(1:k,1:k) is a partial triangular factor, the entries !> below the diagonal in the first k columns are the Householder !> vectors, and the rest of AF contains a partially updated !> matrix. !>
LDA
!> LDA is INTEGER !> The leading dimension of the arrays A and AF. !>
TAU
!> TAU is COMPLEX*16 array, dimension (K) !> Details of the Householder transformations as returned by !> ZGEQPF. !>
JPVT
!> JPVT is INTEGER array, dimension (N) !> Pivot information as returned by ZGEQPF. !>
WORK
!> WORK is COMPLEX*16 array, dimension (LWORK) !>
LWORK
!> LWORK is INTEGER !> The length of the array WORK. LWORK >= M*N+N. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 118 of file zqpt01.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |