.TH "TESTING/LIN/zqlt03.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/LIN/zqlt03.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzqlt03\fP (m, n, k, af, c, cc, q, lda, tau, work, lwork, rwork, result)" .br .RI "\fBZQLT03\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zqlt03 (integer m, integer n, integer k, complex*16, dimension( lda, * ) af, complex*16, dimension( lda, * ) c, complex*16, dimension( lda, * ) cc, complex*16, dimension( lda, * ) q, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( * ) result)" .PP \fBZQLT03\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZQLT03 tests ZUNMQL, which computes Q*C, Q'*C, C*Q or C*Q'\&. !> !> ZQLT03 compares the results of a call to ZUNMQL with the results of !> forming Q explicitly by a call to ZUNGQL and then performing matrix !> multiplication by a call to ZGEMM\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The order of the orthogonal matrix Q\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of rows or columns of the matrix C; C is m-by-n if !> Q is applied from the left, or n-by-m if Q is applied from !> the right\&. N >= 0\&. !> .fi .PP .br \fIK\fP .PP .nf !> K is INTEGER !> The number of elementary reflectors whose product defines the !> orthogonal matrix Q\&. M >= K >= 0\&. !> .fi .PP .br \fIAF\fP .PP .nf !> AF is COMPLEX*16 array, dimension (LDA,N) !> Details of the QL factorization of an m-by-n matrix, as !> returned by ZGEQLF\&. See CGEQLF for further details\&. !> .fi .PP .br \fIC\fP .PP .nf !> C is COMPLEX*16 array, dimension (LDA,N) !> .fi .PP .br \fICC\fP .PP .nf !> CC is COMPLEX*16 array, dimension (LDA,N) !> .fi .PP .br \fIQ\fP .PP .nf !> Q is COMPLEX*16 array, dimension (LDA,M) !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the arrays AF, C, CC, and Q\&. !> .fi .PP .br \fITAU\fP .PP .nf !> TAU is COMPLEX*16 array, dimension (min(M,N)) !> The scalar factors of the elementary reflectors corresponding !> to the QL factorization in AF\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (LWORK) !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The length of WORK\&. LWORK must be at least M, and should be !> M*NB, where NB is the blocksize for this environment\&. !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (M) !> .fi .PP .br \fIRESULT\fP .PP .nf !> RESULT is DOUBLE PRECISION array, dimension (4) !> The test ratios compare two techniques for multiplying a !> random matrix C by an m-by-m orthogonal matrix Q\&. !> RESULT(1) = norm( Q*C - Q*C ) / ( M * norm(C) * EPS ) !> RESULT(2) = norm( C*Q - C*Q ) / ( M * norm(C) * EPS ) !> RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS ) !> RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS ) !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB134\fP of file \fBzqlt03\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.