TESTING/LIN/zqlt01.f(3) Library Functions Manual TESTING/LIN/zqlt01.f(3)

TESTING/LIN/zqlt01.f


subroutine zqlt01 (m, n, a, af, q, l, lda, tau, work, lwork, rwork, result)
ZQLT01

ZQLT01

Purpose:

!>
!> ZQLT01 tests ZGEQLF, which computes the QL factorization of an m-by-n
!> matrix A, and partially tests ZUNGQL which forms the m-by-m
!> orthogonal matrix Q.
!>
!> ZQLT01 compares L with Q'*A, and checks that Q is orthogonal.
!> 

Parameters

M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 

N

!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          The m-by-n matrix A.
!> 

AF

!>          AF is COMPLEX*16 array, dimension (LDA,N)
!>          Details of the QL factorization of A, as returned by ZGEQLF.
!>          See ZGEQLF for further details.
!> 

Q

!>          Q is COMPLEX*16 array, dimension (LDA,M)
!>          The m-by-m orthogonal matrix Q.
!> 

L

!>          L is COMPLEX*16 array, dimension (LDA,max(M,N))
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the arrays A, AF, Q and R.
!>          LDA >= max(M,N).
!> 

TAU

!>          TAU is COMPLEX*16 array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors, as returned
!>          by ZGEQLF.
!> 

WORK

!>          WORK is COMPLEX*16 array, dimension (LWORK)
!> 

LWORK

!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!> 

RWORK

!>          RWORK is DOUBLE PRECISION array, dimension (M)
!> 

RESULT

!>          RESULT is DOUBLE PRECISION array, dimension (2)
!>          The test ratios:
!>          RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS )
!>          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 124 of file zqlt01.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK