SRC/zptts2.f(3) | Library Functions Manual | SRC/zptts2.f(3) |
NAME
SRC/zptts2.f
SYNOPSIS
Functions/Subroutines
subroutine zptts2 (iuplo, n, nrhs, d, e, b, ldb)
ZPTTS2 solves a tridiagonal system of the form AX=B using the L D LH
factorization computed by spttrf.
Function/Subroutine Documentation
subroutine zptts2 (integer iuplo, integer n, integer nrhs, double precision, dimension( * ) d, complex*16, dimension( * ) e, complex*16, dimension( ldb, * ) b, integer ldb)
ZPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.
Purpose:
ZPTTS2 solves a tridiagonal system of the form A * X = B using the factorization A = U**H *D*U or A = L*D*L**H computed by ZPTTRF. D is a diagonal matrix specified in the vector D, U (or L) is a unit bidiagonal matrix whose superdiagonal (subdiagonal) is specified in the vector E, and X and B are N by NRHS matrices.
Parameters
IUPLO
IUPLO is INTEGER Specifies the form of the factorization and whether the vector E is the superdiagonal of the upper bidiagonal factor U or the subdiagonal of the lower bidiagonal factor L. = 1: A = U**H *D*U, E is the superdiagonal of U = 0: A = L*D*L**H, E is the subdiagonal of L
N
N is INTEGER The order of the tridiagonal matrix A. N >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
D
D is DOUBLE PRECISION array, dimension (N) The n diagonal elements of the diagonal matrix D from the factorization A = U**H *D*U or A = L*D*L**H.
E
E is COMPLEX*16 array, dimension (N-1) If IUPLO = 1, the (n-1) superdiagonal elements of the unit bidiagonal factor U from the factorization A = U**H*D*U. If IUPLO = 0, the (n-1) subdiagonal elements of the unit bidiagonal factor L from the factorization A = L*D*L**H.
B
B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the right hand side vectors B for the system of linear equations. On exit, the solution vectors, X.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 112 of file zptts2.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |