TESTING/LIN/zptt01.f(3) | Library Functions Manual | TESTING/LIN/zptt01.f(3) |
NAME
TESTING/LIN/zptt01.f
SYNOPSIS
Functions/Subroutines
subroutine zptt01 (n, d, e, df, ef, work, resid)
ZPTT01
Function/Subroutine Documentation
subroutine zptt01 (integer n, double precision, dimension( * ) d, complex*16, dimension( * ) e, double precision, dimension( * ) df, complex*16, dimension( * ) ef, complex*16, dimension( * ) work, double precision resid)
ZPTT01
Purpose:
!> !> ZPTT01 reconstructs a tridiagonal matrix A from its L*D*L' !> factorization and computes the residual !> norm(L*D*L' - A) / ( n * norm(A) * EPS ), !> where EPS is the machine epsilon. !>
Parameters
N
!> N is INTEGER !> The order of the matrix A. !>
D
!> D is DOUBLE PRECISION array, dimension (N) !> The n diagonal elements of the tridiagonal matrix A. !>
E
!> E is COMPLEX*16 array, dimension (N-1) !> The (n-1) subdiagonal elements of the tridiagonal matrix A. !>
DF
!> DF is DOUBLE PRECISION array, dimension (N) !> The n diagonal elements of the factor L from the L*D*L' !> factorization of A. !>
EF
!> EF is COMPLEX*16 array, dimension (N-1) !> The (n-1) subdiagonal elements of the factor L from the !> L*D*L' factorization of A. !>
WORK
!> WORK is COMPLEX*16 array, dimension (2*N) !>
RESID
!> RESID is DOUBLE PRECISION !> norm(L*D*L' - A) / (n * norm(A) * EPS) !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 91 of file zptt01.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.12.0 | LAPACK |