.TH "SRC/zptcon.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zptcon.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzptcon\fP (n, d, e, anorm, rcond, rwork, info)" .br .RI "\fBZPTCON\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zptcon (integer n, double precision, dimension( * ) d, complex*16, dimension( * ) e, double precision anorm, double precision rcond, double precision, dimension( * ) rwork, integer info)" .PP \fBZPTCON\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZPTCON computes the reciprocal of the condition number (in the !> 1-norm) of a complex Hermitian positive definite tridiagonal matrix !> using the factorization A = L*D*L**H or A = U**H*D*U computed by !> ZPTTRF\&. !> !> Norm(inv(A)) is computed by a direct method, and the reciprocal of !> the condition number is computed as !> RCOND = 1 / (ANORM * norm(inv(A)))\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fID\fP .PP .nf !> D is DOUBLE PRECISION array, dimension (N) !> The n diagonal elements of the diagonal matrix D from the !> factorization of A, as computed by ZPTTRF\&. !> .fi .PP .br \fIE\fP .PP .nf !> E is COMPLEX*16 array, dimension (N-1) !> The (n-1) off-diagonal elements of the unit bidiagonal factor !> U or L from the factorization of A, as computed by ZPTTRF\&. !> .fi .PP .br \fIANORM\fP .PP .nf !> ANORM is DOUBLE PRECISION !> The 1-norm of the original matrix A\&. !> .fi .PP .br \fIRCOND\fP .PP .nf !> RCOND is DOUBLE PRECISION !> The reciprocal of the condition number of the matrix A, !> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the !> 1-norm of inv(A) computed in this routine\&. !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (N) !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The method used is described in Nicholas J\&. Higham, , SIAM J\&. Sci\&. Stat\&. Comput\&., Vol\&. 7, No\&. 1, January 1986\&. !> .fi .PP .RE .PP .PP Definition at line \fB118\fP of file \fBzptcon\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.