.TH "SRC/zpstf2.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zpstf2.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzpstf2\fP (uplo, n, a, lda, piv, rank, tol, work, info)" .br .RI "\fBZPSTF2\fP computes the Cholesky factorization with complete pivoting of a complex Hermitian positive semidefinite matrix\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zpstf2 (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( n ) piv, integer rank, double precision tol, double precision, dimension( 2*n ) work, integer info)" .PP \fBZPSTF2\fP computes the Cholesky factorization with complete pivoting of a complex Hermitian positive semidefinite matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZPSTF2 computes the Cholesky factorization with complete !> pivoting of a complex Hermitian positive semidefinite matrix A\&. !> !> The factorization has the form !> P**T * A * P = U**H * U , if UPLO = 'U', !> P**T * A * P = L * L**H, if UPLO = 'L', !> where U is an upper triangular matrix and L is lower triangular, and !> P is stored as vector PIV\&. !> !> This algorithm does not attempt to check that A is positive !> semidefinite\&. This version of the algorithm calls level 2 BLAS\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> symmetric matrix A is stored\&. !> = 'U': Upper triangular !> = 'L': Lower triangular !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the symmetric matrix A\&. If UPLO = 'U', the leading !> n by n upper triangular part of A contains the upper !> triangular part of the matrix A, and the strictly lower !> triangular part of A is not referenced\&. If UPLO = 'L', the !> leading n by n lower triangular part of A contains the lower !> triangular part of the matrix A, and the strictly upper !> triangular part of A is not referenced\&. !> !> On exit, if INFO = 0, the factor U or L from the Cholesky !> factorization as above\&. !> .fi .PP .br \fIPIV\fP .PP .nf !> PIV is INTEGER array, dimension (N) !> PIV is such that the nonzero entries are P( PIV(K), K ) = 1\&. !> .fi .PP .br \fIRANK\fP .PP .nf !> RANK is INTEGER !> The rank of A given by the number of steps the algorithm !> completed\&. !> .fi .PP .br \fITOL\fP .PP .nf !> TOL is DOUBLE PRECISION !> User defined tolerance\&. If TOL < 0, then N*U*MAX( A( K,K ) ) !> will be used\&. The algorithm terminates at the (K-1)st step !> if the pivot <= TOL\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,N)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is DOUBLE PRECISION array, dimension (2*N) !> Work space\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> < 0: If INFO = -K, the K-th argument had an illegal value, !> = 0: algorithm completed successfully, and !> > 0: the matrix A is either rank deficient with computed rank !> as returned in RANK, or is not positive semidefinite\&. See !> Section 7 of LAPACK Working Note #161 for further !> information\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB141\fP of file \fBzpstf2\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.