TESTING/LIN/zpst01.f(3) Library Functions Manual TESTING/LIN/zpst01.f(3)

TESTING/LIN/zpst01.f


subroutine zpst01 (uplo, n, a, lda, afac, ldafac, perm, ldperm, piv, rwork, resid, rank)
ZPST01

ZPST01

Purpose:

!>
!> ZPST01 reconstructs an Hermitian positive semidefinite matrix A
!> from its L or U factors and the permutation matrix P and computes
!> the residual
!>    norm( P*L*L'*P' - A ) / ( N * norm(A) * EPS ) or
!>    norm( P*U'*U*P' - A ) / ( N * norm(A) * EPS ),
!> where EPS is the machine epsilon, L' is the conjugate transpose of L,
!> and U' is the conjugate transpose of U.
!> 

Parameters

UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          Hermitian matrix A is stored:
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 

N

!>          N is INTEGER
!>          The number of rows and columns of the matrix A.  N >= 0.
!> 

A

!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          The original Hermitian matrix A.
!> 

LDA

!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N)
!> 

AFAC

!>          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
!>          The factor L or U from the L*L' or U'*U
!>          factorization of A.
!> 

LDAFAC

!>          LDAFAC is INTEGER
!>          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
!> 

PERM

!>          PERM is COMPLEX*16 array, dimension (LDPERM,N)
!>          Overwritten with the reconstructed matrix, and then with the
!>          difference P*L*L'*P' - A (or P*U'*U*P' - A)
!> 

LDPERM

!>          LDPERM is INTEGER
!>          The leading dimension of the array PERM.
!>          LDAPERM >= max(1,N).
!> 

PIV

!>          PIV is INTEGER array, dimension (N)
!>          PIV is such that the nonzero entries are
!>          P( PIV( K ), K ) = 1.
!> 

RWORK

!>          RWORK is DOUBLE PRECISION array, dimension (N)
!> 

RESID

!>          RESID is DOUBLE PRECISION
!>          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
!>          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
!> 

RANK

!>          RANK is INTEGER
!>          number of nonzero singular values of A.
!> 

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 134 of file zpst01.f.

Generated automatically by Doxygen for LAPACK from the source code.

Version 3.12.0 LAPACK