.TH "TESTING/LIN/zppt05.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/LIN/zppt05.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzppt05\fP (uplo, n, nrhs, ap, b, ldb, x, ldx, xact, ldxact, ferr, berr, reslts)" .br .RI "\fBZPPT05\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zppt05 (character uplo, integer n, integer nrhs, complex*16, dimension( * ) ap, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldx, * ) x, integer ldx, complex*16, dimension( ldxact, * ) xact, integer ldxact, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, double precision, dimension( * ) reslts)" .PP \fBZPPT05\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZPPT05 tests the error bounds from iterative refinement for the !> computed solution to a system of equations A*X = B, where A is a !> Hermitian matrix in packed storage format\&. !> !> RESLTS(1) = test of the error bound !> = norm(X - XACT) / ( norm(X) * FERR ) !> !> A large value is returned if this ratio is not less than one\&. !> !> RESLTS(2) = residual from the iterative refinement routine !> = the maximum of BERR / ( (n+1)*EPS + (*) ), where !> (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrix A is stored\&. !> = 'U': Upper triangular !> = 'L': Lower triangular !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of rows of the matrices X, B, and XACT, and the !> order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fINRHS\fP .PP .nf !> NRHS is INTEGER !> The number of columns of the matrices X, B, and XACT\&. !> NRHS >= 0\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The upper or lower triangle of the Hermitian matrix A, packed !> columnwise in a linear array\&. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> The right hand side vectors for the system of linear !> equations\&. !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the array B\&. LDB >= max(1,N)\&. !> .fi .PP .br \fIX\fP .PP .nf !> X is COMPLEX*16 array, dimension (LDX,NRHS) !> The computed solution vectors\&. Each vector is stored as a !> column of the matrix X\&. !> .fi .PP .br \fILDX\fP .PP .nf !> LDX is INTEGER !> The leading dimension of the array X\&. LDX >= max(1,N)\&. !> .fi .PP .br \fIXACT\fP .PP .nf !> XACT is COMPLEX*16 array, dimension (LDX,NRHS) !> The exact solution vectors\&. Each vector is stored as a !> column of the matrix XACT\&. !> .fi .PP .br \fILDXACT\fP .PP .nf !> LDXACT is INTEGER !> The leading dimension of the array XACT\&. LDXACT >= max(1,N)\&. !> .fi .PP .br \fIFERR\fP .PP .nf !> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bounds for each solution vector !> X\&. If XTRUE is the true solution, FERR bounds the magnitude !> of the largest entry in (X - XTRUE) divided by the magnitude !> of the largest entry in X\&. !> .fi .PP .br \fIBERR\fP .PP .nf !> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector (i\&.e\&., the smallest relative change in any entry of A !> or B that makes X an exact solution)\&. !> .fi .PP .br \fIRESLTS\fP .PP .nf !> RESLTS is DOUBLE PRECISION array, dimension (2) !> The maximum over the NRHS solution vectors of the ratios: !> RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) !> RESLTS(2) = BERR / ( (n+1)*EPS + (*) ) !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB155\fP of file \fBzppt05\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.