.TH "SRC/zppequ.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zppequ.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzppequ\fP (uplo, n, ap, s, scond, amax, info)" .br .RI "\fBZPPEQU\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zppequ (character uplo, integer n, complex*16, dimension( * ) ap, double precision, dimension( * ) s, double precision scond, double precision amax, integer info)" .PP \fBZPPEQU\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZPPEQU computes row and column scalings intended to equilibrate a !> Hermitian positive definite matrix A in packed storage and reduce !> its condition number (with respect to the two-norm)\&. S contains the !> scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix !> B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal\&. !> This choice of S puts the condition number of B within a factor N of !> the smallest possible condition number over all possible diagonal !> scalings\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIAP\fP .PP .nf !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The upper or lower triangle of the Hermitian matrix A, packed !> columnwise in a linear array\&. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n\&. !> .fi .PP .br \fIS\fP .PP .nf !> S is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, S contains the scale factors for A\&. !> .fi .PP .br \fISCOND\fP .PP .nf !> SCOND is DOUBLE PRECISION !> If INFO = 0, S contains the ratio of the smallest S(i) to !> the largest S(i)\&. If SCOND >= 0\&.1 and AMAX is neither too !> large nor too small, it is not worth scaling by S\&. !> .fi .PP .br \fIAMAX\fP .PP .nf !> AMAX is DOUBLE PRECISION !> Absolute value of largest matrix element\&. If AMAX is very !> close to overflow or very close to underflow, the matrix !> should be scaled\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element is nonpositive\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB116\fP of file \fBzppequ\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.