TESTING/LIN/zpot01.f(3) Library Functions Manual TESTING/LIN/zpot01.f(3) NAME TESTING/LIN/zpot01.f SYNOPSIS Functions/Subroutines subroutine zpot01 (uplo, n, a, lda, afac, ldafac, rwork, resid) ZPOT01 Function/Subroutine Documentation subroutine zpot01 (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldafac, * ) afac, integer ldafac, double precision, dimension( * ) rwork, double precision resid) ZPOT01 Purpose: !> !> ZPOT01 reconstructs a Hermitian positive definite matrix A from !> its L*L' or U'*U factorization and computes the residual !> norm( L*L' - A ) / ( N * norm(A) * EPS ) or !> norm( U'*U - A ) / ( N * norm(A) * EPS ), !> where EPS is the machine epsilon, L' is the conjugate transpose of L, !> and U' is the conjugate transpose of U. !> Parameters UPLO !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrix A is stored: !> = 'U': Upper triangular !> = 'L': Lower triangular !> N !> N is INTEGER !> The number of rows and columns of the matrix A. N >= 0. !> A !> A is COMPLEX*16 array, dimension (LDA,N) !> The original Hermitian matrix A. !> LDA !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N) !> AFAC !> AFAC is COMPLEX*16 array, dimension (LDAFAC,N) !> On entry, the factor L or U from the L * L**H or U**H * U !> factorization of A. !> Overwritten with the reconstructed matrix, and then with !> the difference L * L**H - A (or U**H * U - A). !> LDAFAC !> LDAFAC is INTEGER !> The leading dimension of the array AFAC. LDAFAC >= max(1,N). !> RWORK !> RWORK is DOUBLE PRECISION array, dimension (N) !> RESID !> RESID is DOUBLE PRECISION !> If UPLO = 'L', norm(L * L**H - A) / ( N * norm(A) * EPS ) !> If UPLO = 'U', norm(U**H * U - A) / ( N * norm(A) * EPS ) !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Definition at line 105 of file zpot01.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 TESTING/LIN/zpot01.f(3)