SRC/zpftrs.f(3)            Library Functions Manual            SRC/zpftrs.f(3)

NAME
       SRC/zpftrs.f

SYNOPSIS
   Functions/Subroutines
       subroutine zpftrs (transr, uplo, n, nrhs, a, b, ldb, info)
           ZPFTRS

Function/Subroutine Documentation
   subroutine zpftrs (character transr, character uplo, integer n, integer
       nrhs, complex*16, dimension( 0: * ) a, complex*16, dimension( ldb, * )
       b, integer ldb, integer info)
       ZPFTRS

       Purpose:


           !>
           !> ZPFTRS solves a system of linear equations A*X = B with a Hermitian
           !> positive definite matrix A using the Cholesky factorization
           !> A = U**H*U or A = L*L**H computed by ZPFTRF.
           !>

       Parameters
           TRANSR

           !>          TRANSR is CHARACTER*1
           !>          = 'N':  The Normal TRANSR of RFP A is stored;
           !>          = 'C':  The Conjugate-transpose TRANSR of RFP A is stored.
           !>

           UPLO

           !>          UPLO is CHARACTER*1
           !>          = 'U':  Upper triangle of RFP A is stored;
           !>          = 'L':  Lower triangle of RFP A is stored.
           !>

           N

           !>          N is INTEGER
           !>          The order of the matrix A.  N >= 0.
           !>

           NRHS

           !>          NRHS is INTEGER
           !>          The number of right hand sides, i.e., the number of columns
           !>          of the matrix B.  NRHS >= 0.
           !>

           A

           !>          A is COMPLEX*16 array, dimension ( N*(N+1)/2 );
           !>          The triangular factor U or L from the Cholesky factorization
           !>          of RFP A = U**H*U or RFP A = L*L**H, as computed by ZPFTRF.
           !>          See note below for more details about RFP A.
           !>

           B

           !>          B is COMPLEX*16 array, dimension (LDB,NRHS)
           !>          On entry, the right hand side matrix B.
           !>          On exit, the solution matrix X.
           !>

           LDB

           !>          LDB is INTEGER
           !>          The leading dimension of the array B.  LDB >= max(1,N).
           !>

           INFO

           !>          INFO is INTEGER
           !>          = 0:  successful exit
           !>          < 0:  if INFO = -i, the i-th argument had an illegal value
           !>

       Author
           Univ. of Tennessee


           Univ. of California Berkeley


           Univ. of Colorado Denver


           NAG Ltd.

       Further Details:


           !>
           !>  We first consider Standard Packed Format when N is even.
           !>  We give an example where N = 6.
           !>
           !>      AP is Upper             AP is Lower
           !>
           !>   00 01 02 03 04 05       00
           !>      11 12 13 14 15       10 11
           !>         22 23 24 25       20 21 22
           !>            33 34 35       30 31 32 33
           !>               44 45       40 41 42 43 44
           !>                  55       50 51 52 53 54 55
           !>
           !>
           !>  Let TRANSR = 'N'. RFP holds AP as follows:
           !>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
           !>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
           !>  conjugate-transpose of the first three columns of AP upper.
           !>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
           !>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
           !>  conjugate-transpose of the last three columns of AP lower.
           !>  To denote conjugate we place -- above the element. This covers the
           !>  case N even and TRANSR = 'N'.
           !>
           !>         RFP A                   RFP A
           !>
           !>                                -- -- --
           !>        03 04 05                33 43 53
           !>                                   -- --
           !>        13 14 15                00 44 54
           !>                                      --
           !>        23 24 25                10 11 55
           !>
           !>        33 34 35                20 21 22
           !>        --
           !>        00 44 45                30 31 32
           !>        -- --
           !>        01 11 55                40 41 42
           !>        -- -- --
           !>        02 12 22                50 51 52
           !>
           !>  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
           !>  transpose of RFP A above. One therefore gets:
           !>
           !>
           !>           RFP A                   RFP A
           !>
           !>     -- -- -- --                -- -- -- -- -- --
           !>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
           !>     -- -- -- -- --                -- -- -- -- --
           !>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
           !>     -- -- -- -- -- --                -- -- -- --
           !>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
           !>
           !>
           !>  We next  consider Standard Packed Format when N is odd.
           !>  We give an example where N = 5.
           !>
           !>     AP is Upper                 AP is Lower
           !>
           !>   00 01 02 03 04              00
           !>      11 12 13 14              10 11
           !>         22 23 24              20 21 22
           !>            33 34              30 31 32 33
           !>               44              40 41 42 43 44
           !>
           !>
           !>  Let TRANSR = 'N'. RFP holds AP as follows:
           !>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
           !>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
           !>  conjugate-transpose of the first two   columns of AP upper.
           !>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
           !>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
           !>  conjugate-transpose of the last two   columns of AP lower.
           !>  To denote conjugate we place -- above the element. This covers the
           !>  case N odd  and TRANSR = 'N'.
           !>
           !>         RFP A                   RFP A
           !>
           !>                                   -- --
           !>        02 03 04                00 33 43
           !>                                      --
           !>        12 13 14                10 11 44
           !>
           !>        22 23 24                20 21 22
           !>        --
           !>        00 33 34                30 31 32
           !>        -- --
           !>        01 11 44                40 41 42
           !>
           !>  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
           !>  transpose of RFP A above. One therefore gets:
           !>
           !>
           !>           RFP A                   RFP A
           !>
           !>     -- -- --                   -- -- -- -- -- --
           !>     02 12 22 00 01             00 10 20 30 40 50
           !>     -- -- -- --                   -- -- -- -- --
           !>     03 13 23 33 11             33 11 21 31 41 51
           !>     -- -- -- -- --                   -- -- -- --
           !>     04 14 24 34 44             43 44 22 32 42 52
           !>

       Definition at line 219 of file zpftrs.f.

Author
       Generated automatically by Doxygen for LAPACK from the source code.

LAPACK                          Version 3.12.0                 SRC/zpftrs.f(3)