.TH "TESTING/EIG/zlsets.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME TESTING/EIG/zlsets.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzlsets\fP (m, p, n, a, af, lda, b, bf, ldb, c, cf, d, df, x, work, lwork, rwork, result)" .br .RI "\fBZLSETS\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zlsets (integer m, integer p, integer n, complex*16, dimension( lda, * ) a, complex*16, dimension( lda, * ) af, integer lda, complex*16, dimension( ldb, * ) b, complex*16, dimension( ldb, * ) bf, integer ldb, complex*16, dimension( * ) c, complex*16, dimension( * ) cf, complex*16, dimension( * ) d, complex*16, dimension( * ) df, complex*16, dimension( * ) x, complex*16, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( 2 ) result)" .PP \fBZLSETS\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZLSETS tests ZGGLSE - a subroutine for solving linear equality !> constrained least square problem (LSE)\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0\&. !> .fi .PP .br \fIP\fP .PP .nf !> P is INTEGER !> The number of rows of the matrix B\&. P >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrices A and B\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> The M-by-N matrix A\&. !> .fi .PP .br \fIAF\fP .PP .nf !> AF is COMPLEX*16 array, dimension (LDA,N) !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the arrays A, AF, Q and R\&. !> LDA >= max(M,N)\&. !> .fi .PP .br \fIB\fP .PP .nf !> B is COMPLEX*16 array, dimension (LDB,N) !> The P-by-N matrix A\&. !> .fi .PP .br \fIBF\fP .PP .nf !> BF is COMPLEX*16 array, dimension (LDB,N) !> .fi .PP .br \fILDB\fP .PP .nf !> LDB is INTEGER !> The leading dimension of the arrays B, BF, V and S\&. !> LDB >= max(P,N)\&. !> .fi .PP .br \fIC\fP .PP .nf !> C is COMPLEX*16 array, dimension( M ) !> the vector C in the LSE problem\&. !> .fi .PP .br \fICF\fP .PP .nf !> CF is COMPLEX*16 array, dimension( M ) !> .fi .PP .br \fID\fP .PP .nf !> D is COMPLEX*16 array, dimension( P ) !> the vector D in the LSE problem\&. !> .fi .PP .br \fIDF\fP .PP .nf !> DF is COMPLEX*16 array, dimension( P ) !> .fi .PP .br \fIX\fP .PP .nf !> X is COMPLEX*16 array, dimension( N ) !> solution vector X in the LSE problem\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (LWORK) !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. !> .fi .PP .br \fIRWORK\fP .PP .nf !> RWORK is DOUBLE PRECISION array, dimension (M) !> .fi .PP .br \fIRESULT\fP .PP .nf !> RESULT is DOUBLE PRECISION array, dimension (2) !> The test ratios: !> RESULT(1) = norm( A*x - c )/ norm(A)*norm(X)*EPS !> RESULT(2) = norm( B*x - d )/ norm(B)*norm(X)*EPS !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB149\fP of file \fBzlsets\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.