.TH "SRC/zlatsqr.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zlatsqr.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzlatsqr\fP (m, n, mb, nb, a, lda, t, ldt, work, lwork, info)" .br .RI "\fBZLATSQR\fP " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zlatsqr (integer m, integer n, integer mb, integer nb, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldt, * ) t, integer ldt, complex*16, dimension( * ) work, integer lwork, integer info)" .PP \fBZLATSQR\fP .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZLATSQR computes a blocked Tall-Skinny QR factorization of !> a complex M-by-N matrix A for M >= N: !> !> A = Q * ( R ), !> ( 0 ) !> !> where: !> !> Q is a M-by-M orthogonal matrix, stored on exit in an implicit !> form in the elements below the diagonal of the array A and in !> the elements of the array T; !> !> R is an upper-triangular N-by-N matrix, stored on exit in !> the elements on and above the diagonal of the array A\&. !> !> 0 is a (M-N)-by-N zero matrix, and is not stored\&. !> !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix A\&. M >= N >= 0\&. !> .fi .PP .br \fIMB\fP .PP .nf !> MB is INTEGER !> The row block size to be used in the blocked QR\&. !> MB > N\&. !> .fi .PP .br \fINB\fP .PP .nf !> NB is INTEGER !> The column block size to be used in the blocked QR\&. !> N >= NB >= 1\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the M-by-N matrix A\&. !> On exit, the elements on and above the diagonal !> of the array contain the N-by-N upper triangular matrix R; !> the elements below the diagonal represent Q by the columns !> of blocked V (see Further Details)\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fIT\fP .PP .nf !> T is COMPLEX*16 array, !> dimension (LDT, N * Number_of_row_blocks) !> where Number_of_row_blocks = CEIL((M-N)/(MB-N)) !> The blocked upper triangular block reflectors stored in compact form !> as a sequence of upper triangular blocks\&. !> See Further Details below\&. !> .fi .PP .br \fILDT\fP .PP .nf !> LDT is INTEGER !> The leading dimension of the array T\&. LDT >= NB\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the minimal LWORK\&. !> .fi .PP .br \fILWORK\fP .PP .nf !> LWORK is INTEGER !> The dimension of the array WORK\&. !> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= NB*N, otherwise\&. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the minimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations, !> representing Q as a product of other orthogonal matrices !> Q = Q(1) * Q(2) * \&. \&. \&. * Q(k) !> where each Q(i) zeros out subdiagonal entries of a block of MB rows of A: !> Q(1) zeros out the subdiagonal entries of rows 1:MB of A !> Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A !> Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A !> \&. \&. \&. !> !> Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors !> stored under the diagonal of rows 1:MB of A, and by upper triangular !> block reflectors, stored in array T(1:LDT,1:N)\&. !> For more information see Further Details in GEQRT\&. !> !> Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors !> stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular !> block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N)\&. !> The last Q(k) may use fewer rows\&. !> For more information see Further Details in TPQRT\&. !> !> For more details of the overall algorithm, see the description of !> Sequential TSQR in Section 2\&.2 of [1]\&. !> !> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,” !> J\&. Demmel, L\&. Grigori, M\&. Hoemmen, J\&. Langou, !> SIAM J\&. Sci\&. Comput, vol\&. 34, no\&. 1, 2012 !> .fi .PP .RE .PP .PP Definition at line \fB170\fP of file \fBzlatsqr\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.