.TH "SRC/zlatrz.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zlatrz.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzlatrz\fP (m, n, l, a, lda, tau, work)" .br .RI "\fBZLATRZ\fP factors an upper trapezoidal matrix by means of unitary transformations\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zlatrz (integer m, integer n, integer l, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau, complex*16, dimension( * ) work)" .PP \fBZLATRZ\fP factors an upper trapezoidal matrix by means of unitary transformations\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix !> [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z by means !> of unitary transformations, where Z is an (M+L)-by-(M+L) unitary !> matrix and, R and A1 are M-by-M upper triangular matrices\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIL\fP .PP .nf !> L is INTEGER !> The number of columns of the matrix A containing the !> meaningful part of the Householder vectors\&. N-M >= L >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the leading M-by-N upper trapezoidal part of the !> array A must contain the matrix to be factorized\&. !> On exit, the leading M-by-M upper triangular part of A !> contains the upper triangular matrix R, and elements N-L+1 to !> N of the first M rows of A, with the array TAU, represent the !> unitary matrix Z as a product of M elementary reflectors\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(1,M)\&. !> .fi .PP .br \fITAU\fP .PP .nf !> TAU is COMPLEX*16 array, dimension (M) !> The scalar factors of the elementary reflectors\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (M) !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 A\&. Petitet, Computer Science Dept\&., Univ\&. of Tenn\&., Knoxville, USA .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The factorization is obtained by Householder's method\&. The kth !> transformation matrix, Z( k ), which is used to introduce zeros into !> the ( m - k + 1 )th row of A, is given in the form !> !> Z( k ) = ( I 0 ), !> ( 0 T( k ) ) !> !> where !> !> T( k ) = I - tau*u( k )*u( k )**H, u( k ) = ( 1 ), !> ( 0 ) !> ( z( k ) ) !> !> tau is a scalar and z( k ) is an l element vector\&. tau and z( k ) !> are chosen to annihilate the elements of the kth row of A2\&. !> !> The scalar tau is returned in the kth element of TAU and the vector !> u( k ) in the kth row of A2, such that the elements of z( k ) are !> in a( k, l + 1 ), \&.\&.\&., a( k, n )\&. The elements of R are returned in !> the upper triangular part of A1\&. !> !> Z is given by !> !> Z = Z( 1 ) * Z( 2 ) * \&.\&.\&. * Z( m )\&. !> .fi .PP .RE .PP .PP Definition at line \fB139\fP of file \fBzlatrz\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.