.TH "SRC/zlascl.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zlascl.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzlascl\fP (type, kl, ku, cfrom, cto, m, n, a, lda, info)" .br .RI "\fBZLASCL\fP multiplies a general rectangular matrix by a real scalar defined as cto/cfrom\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zlascl (character type, integer kl, integer ku, double precision cfrom, double precision cto, integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, integer info)" .PP \fBZLASCL\fP multiplies a general rectangular matrix by a real scalar defined as cto/cfrom\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZLASCL multiplies the M by N complex matrix A by the real scalar !> CTO/CFROM\&. This is done without over/underflow as long as the final !> result CTO*A(I,J)/CFROM does not over/underflow\&. TYPE specifies that !> A may be full, upper triangular, lower triangular, upper Hessenberg, !> or banded\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fITYPE\fP .PP .nf !> TYPE is CHARACTER*1 !> TYPE indices the storage type of the input matrix\&. !> = 'G': A is a full matrix\&. !> = 'L': A is a lower triangular matrix\&. !> = 'U': A is an upper triangular matrix\&. !> = 'H': A is an upper Hessenberg matrix\&. !> = 'B': A is a symmetric band matrix with lower bandwidth KL !> and upper bandwidth KU and with the only the lower !> half stored\&. !> = 'Q': A is a symmetric band matrix with lower bandwidth KL !> and upper bandwidth KU and with the only the upper !> half stored\&. !> = 'Z': A is a band matrix with lower bandwidth KL and upper !> bandwidth KU\&. See ZGBTRF for storage details\&. !> .fi .PP .br \fIKL\fP .PP .nf !> KL is INTEGER !> The lower bandwidth of A\&. Referenced only if TYPE = 'B', !> 'Q' or 'Z'\&. !> .fi .PP .br \fIKU\fP .PP .nf !> KU is INTEGER !> The upper bandwidth of A\&. Referenced only if TYPE = 'B', !> 'Q' or 'Z'\&. !> .fi .PP .br \fICFROM\fP .PP .nf !> CFROM is DOUBLE PRECISION !> .fi .PP .br \fICTO\fP .PP .nf !> CTO is DOUBLE PRECISION !> !> The matrix A is multiplied by CTO/CFROM\&. A(I,J) is computed !> without over/underflow if the final result CTO*A(I,J)/CFROM !> can be represented without over/underflow\&. CFROM must be !> nonzero\&. !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix A\&. N >= 0\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> The matrix to be multiplied by CTO/CFROM\&. See TYPE for the !> storage type\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. !> If TYPE = 'G', 'L', 'U', 'H', LDA >= max(1,M); !> TYPE = 'B', LDA >= KL+1; !> TYPE = 'Q', LDA >= KU+1; !> TYPE = 'Z', LDA >= 2*KL+KU+1\&. !> .fi .PP .br \fIINFO\fP .PP .nf !> INFO is INTEGER !> 0 - successful exit !> <0 - if INFO = -i, the i-th argument had an illegal value\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB142\fP of file \fBzlascl\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.