.TH "SRC/zlarzt.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zlarzt.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzlarzt\fP (direct, storev, n, k, v, ldv, tau, t, ldt)" .br .RI "\fBZLARZT\fP forms the triangular factor T of a block reflector H = I - vtvH\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zlarzt (character direct, character storev, integer n, integer k, complex*16, dimension( ldv, * ) v, integer ldv, complex*16, dimension( * ) tau, complex*16, dimension( ldt, * ) t, integer ldt)" .PP \fBZLARZT\fP forms the triangular factor T of a block reflector H = I - vtvH\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZLARZT forms the triangular factor T of a complex block reflector !> H of order > n, which is defined as a product of k elementary !> reflectors\&. !> !> If DIRECT = 'F', H = H(1) H(2) \&. \&. \&. H(k) and T is upper triangular; !> !> If DIRECT = 'B', H = H(k) \&. \&. \&. H(2) H(1) and T is lower triangular\&. !> !> If STOREV = 'C', the vector which defines the elementary reflector !> H(i) is stored in the i-th column of the array V, and !> !> H = I - V * T * V**H !> !> If STOREV = 'R', the vector which defines the elementary reflector !> H(i) is stored in the i-th row of the array V, and !> !> H = I - V**H * T * V !> !> Currently, only STOREV = 'R' and DIRECT = 'B' are supported\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fIDIRECT\fP .PP .nf !> DIRECT is CHARACTER*1 !> Specifies the order in which the elementary reflectors are !> multiplied to form the block reflector: !> = 'F': H = H(1) H(2) \&. \&. \&. H(k) (Forward, not supported yet) !> = 'B': H = H(k) \&. \&. \&. H(2) H(1) (Backward) !> .fi .PP .br \fISTOREV\fP .PP .nf !> STOREV is CHARACTER*1 !> Specifies how the vectors which define the elementary !> reflectors are stored (see also Further Details): !> = 'C': columnwise (not supported yet) !> = 'R': rowwise !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The order of the block reflector H\&. N >= 0\&. !> .fi .PP .br \fIK\fP .PP .nf !> K is INTEGER !> The order of the triangular factor T (= the number of !> elementary reflectors)\&. K >= 1\&. !> .fi .PP .br \fIV\fP .PP .nf !> V is COMPLEX*16 array, dimension !> (LDV,K) if STOREV = 'C' !> (LDV,N) if STOREV = 'R' !> The matrix V\&. See further details\&. !> .fi .PP .br \fILDV\fP .PP .nf !> LDV is INTEGER !> The leading dimension of the array V\&. !> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K\&. !> .fi .PP .br \fITAU\fP .PP .nf !> TAU is COMPLEX*16 array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i)\&. !> .fi .PP .br \fIT\fP .PP .nf !> T is COMPLEX*16 array, dimension (LDT,K) !> The k by k triangular factor T of the block reflector\&. !> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is !> lower triangular\&. The rest of the array is not used\&. !> .fi .PP .br \fILDT\fP .PP .nf !> LDT is INTEGER !> The leading dimension of the array T\&. LDT >= K\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBContributors:\fP .RS 4 A\&. Petitet, Computer Science Dept\&., Univ\&. of Tenn\&., Knoxville, USA .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The shape of the matrix V and the storage of the vectors which define !> the H(i) is best illustrated by the following example with n = 5 and !> k = 3\&. The elements equal to 1 are not stored; the corresponding !> array elements are modified but restored on exit\&. The rest of the !> array is not used\&. !> !> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': !> !> ______V_____ !> ( v1 v2 v3 ) / \\ !> ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 \&. \&. \&. \&. 1 ) !> V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 \&. \&. \&. 1 ) !> ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 \&. \&. 1 ) !> ( v1 v2 v3 ) !> \&. \&. \&. !> \&. \&. \&. !> 1 \&. \&. !> 1 \&. !> 1 !> !> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': !> !> ______V_____ !> 1 / \\ !> \&. 1 ( 1 \&. \&. \&. \&. v1 v1 v1 v1 v1 ) !> \&. \&. 1 ( \&. 1 \&. \&. \&. v2 v2 v2 v2 v2 ) !> \&. \&. \&. ( \&. \&. 1 \&. \&. v3 v3 v3 v3 v3 ) !> \&. \&. \&. !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> V = ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> .fi .PP .RE .PP .PP Definition at line \fB184\fP of file \fBzlarzt\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.