.TH "SRC/zlarfb.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zlarfb.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "subroutine \fBzlarfb\fP (side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)" .br .RI "\fBZLARFB\fP applies a block reflector or its conjugate-transpose to a general rectangular matrix\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "subroutine zlarfb (character side, character trans, character direct, character storev, integer m, integer n, integer k, complex*16, dimension( ldv, * ) v, integer ldv, complex*16, dimension( ldt, * ) t, integer ldt, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( ldwork, * ) work, integer ldwork)" .PP \fBZLARFB\fP applies a block reflector or its conjugate-transpose to a general rectangular matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZLARFB applies a complex block reflector H or its transpose H**H to a !> complex M-by-N matrix C, from either the left or the right\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fISIDE\fP .PP .nf !> SIDE is CHARACTER*1 !> = 'L': apply H or H**H from the Left !> = 'R': apply H or H**H from the Right !> .fi .PP .br \fITRANS\fP .PP .nf !> TRANS is CHARACTER*1 !> = 'N': apply H (No transpose) !> = 'C': apply H**H (Conjugate transpose) !> .fi .PP .br \fIDIRECT\fP .PP .nf !> DIRECT is CHARACTER*1 !> Indicates how H is formed from a product of elementary !> reflectors !> = 'F': H = H(1) H(2) \&. \&. \&. H(k) (Forward) !> = 'B': H = H(k) \&. \&. \&. H(2) H(1) (Backward) !> .fi .PP .br \fISTOREV\fP .PP .nf !> STOREV is CHARACTER*1 !> Indicates how the vectors which define the elementary !> reflectors are stored: !> = 'C': Columnwise !> = 'R': Rowwise !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix C\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix C\&. !> .fi .PP .br \fIK\fP .PP .nf !> K is INTEGER !> The order of the matrix T (= the number of elementary !> reflectors whose product defines the block reflector)\&. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0\&. !> .fi .PP .br \fIV\fP .PP .nf !> V is COMPLEX*16 array, dimension !> (LDV,K) if STOREV = 'C' !> (LDV,M) if STOREV = 'R' and SIDE = 'L' !> (LDV,N) if STOREV = 'R' and SIDE = 'R' !> See Further Details\&. !> .fi .PP .br \fILDV\fP .PP .nf !> LDV is INTEGER !> The leading dimension of the array V\&. !> If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); !> if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); !> if STOREV = 'R', LDV >= K\&. !> .fi .PP .br \fIT\fP .PP .nf !> T is COMPLEX*16 array, dimension (LDT,K) !> The triangular K-by-K matrix T in the representation of the !> block reflector\&. !> .fi .PP .br \fILDT\fP .PP .nf !> LDT is INTEGER !> The leading dimension of the array T\&. LDT >= K\&. !> .fi .PP .br \fIC\fP .PP .nf !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N matrix C\&. !> On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H\&. !> .fi .PP .br \fILDC\fP .PP .nf !> LDC is INTEGER !> The leading dimension of the array C\&. LDC >= max(1,M)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is COMPLEX*16 array, dimension (LDWORK,K) !> .fi .PP .br \fILDWORK\fP .PP .nf !> LDWORK is INTEGER !> The leading dimension of the array WORK\&. !> If SIDE = 'L', LDWORK >= max(1,N); !> if SIDE = 'R', LDWORK >= max(1,M)\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP \fBFurther Details:\fP .RS 4 .PP .nf !> !> The shape of the matrix V and the storage of the vectors which define !> the H(i) is best illustrated by the following example with n = 5 and !> k = 3\&. The triangular part of V (including its diagonal) is not !> referenced\&. !> !> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': !> !> V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) !> ( v1 1 ) ( 1 v2 v2 v2 ) !> ( v1 v2 1 ) ( 1 v3 v3 ) !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> !> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': !> !> V = ( v1 v2 v3 ) V = ( v1 v1 1 ) !> ( v1 v2 v3 ) ( v2 v2 v2 1 ) !> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) !> ( 1 v3 ) !> ( 1 ) !> .fi .PP .RE .PP .PP Definition at line \fB194\fP of file \fBzlarfb\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.