SRC/zlarfb.f(3) Library Functions Manual SRC/zlarfb.f(3) NAME SRC/zlarfb.f SYNOPSIS Functions/Subroutines subroutine zlarfb (side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork) ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix. Function/Subroutine Documentation subroutine zlarfb (character side, character trans, character direct, character storev, integer m, integer n, integer k, complex*16, dimension( ldv, * ) v, integer ldv, complex*16, dimension( ldt, * ) t, integer ldt, complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( ldwork, * ) work, integer ldwork) ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix. Purpose: !> !> ZLARFB applies a complex block reflector H or its transpose H**H to a !> complex M-by-N matrix C, from either the left or the right. !> Parameters SIDE !> SIDE is CHARACTER*1 !> = 'L': apply H or H**H from the Left !> = 'R': apply H or H**H from the Right !> TRANS !> TRANS is CHARACTER*1 !> = 'N': apply H (No transpose) !> = 'C': apply H**H (Conjugate transpose) !> DIRECT !> DIRECT is CHARACTER*1 !> Indicates how H is formed from a product of elementary !> reflectors !> = 'F': H = H(1) H(2) . . . H(k) (Forward) !> = 'B': H = H(k) . . . H(2) H(1) (Backward) !> STOREV !> STOREV is CHARACTER*1 !> Indicates how the vectors which define the elementary !> reflectors are stored: !> = 'C': Columnwise !> = 'R': Rowwise !> M !> M is INTEGER !> The number of rows of the matrix C. !> N !> N is INTEGER !> The number of columns of the matrix C. !> K !> K is INTEGER !> The order of the matrix T (= the number of elementary !> reflectors whose product defines the block reflector). !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !> V !> V is COMPLEX*16 array, dimension !> (LDV,K) if STOREV = 'C' !> (LDV,M) if STOREV = 'R' and SIDE = 'L' !> (LDV,N) if STOREV = 'R' and SIDE = 'R' !> See Further Details. !> LDV !> LDV is INTEGER !> The leading dimension of the array V. !> If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); !> if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); !> if STOREV = 'R', LDV >= K. !> T !> T is COMPLEX*16 array, dimension (LDT,K) !> The triangular K-by-K matrix T in the representation of the !> block reflector. !> LDT !> LDT is INTEGER !> The leading dimension of the array T. LDT >= K. !> C !> C is COMPLEX*16 array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H. !> LDC !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> WORK !> WORK is COMPLEX*16 array, dimension (LDWORK,K) !> LDWORK !> LDWORK is INTEGER !> The leading dimension of the array WORK. !> If SIDE = 'L', LDWORK >= max(1,N); !> if SIDE = 'R', LDWORK >= max(1,M). !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Further Details: !> !> The shape of the matrix V and the storage of the vectors which define !> the H(i) is best illustrated by the following example with n = 5 and !> k = 3. The triangular part of V (including its diagonal) is not !> referenced. !> !> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': !> !> V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) !> ( v1 1 ) ( 1 v2 v2 v2 ) !> ( v1 v2 1 ) ( 1 v3 v3 ) !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> !> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': !> !> V = ( v1 v2 v3 ) V = ( v1 v1 1 ) !> ( v1 v2 v3 ) ( v2 v2 v2 1 ) !> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) !> ( 1 v3 ) !> ( 1 ) !> Definition at line 194 of file zlarfb.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/zlarfb.f(3)