SRC/zlar1v.f(3) Library Functions Manual SRC/zlar1v.f(3) NAME SRC/zlar1v.f SYNOPSIS Functions/Subroutines subroutine zlar1v (n, b1, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz, mingma, r, isuppz, nrminv, resid, rqcorr, work) ZLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - I. Function/Subroutine Documentation subroutine zlar1v (integer n, integer b1, integer bn, double precision lambda, double precision, dimension( * ) d, double precision, dimension( * ) l, double precision, dimension( * ) ld, double precision, dimension( * ) lld, double precision pivmin, double precision gaptol, complex*16, dimension( * ) z, logical wantnc, integer negcnt, double precision ztz, double precision mingma, integer r, integer, dimension( * ) isuppz, double precision nrminv, double precision resid, double precision rqcorr, double precision, dimension( * ) work) ZLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - I. Purpose: !> !> ZLAR1V computes the (scaled) r-th column of the inverse of !> the sumbmatrix in rows B1 through BN of the tridiagonal matrix !> L D L**T - sigma I. When sigma is close to an eigenvalue, the !> computed vector is an accurate eigenvector. Usually, r corresponds !> to the index where the eigenvector is largest in magnitude. !> The following steps accomplish this computation : !> (a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T, !> (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T, !> (c) Computation of the diagonal elements of the inverse of !> L D L**T - sigma I by combining the above transforms, and choosing !> r as the index where the diagonal of the inverse is (one of the) !> largest in magnitude. !> (d) Computation of the (scaled) r-th column of the inverse using the !> twisted factorization obtained by combining the top part of the !> the stationary and the bottom part of the progressive transform. !> Parameters N !> N is INTEGER !> The order of the matrix L D L**T. !> B1 !> B1 is INTEGER !> First index of the submatrix of L D L**T. !> BN !> BN is INTEGER !> Last index of the submatrix of L D L**T. !> LAMBDA !> LAMBDA is DOUBLE PRECISION !> The shift. In order to compute an accurate eigenvector, !> LAMBDA should be a good approximation to an eigenvalue !> of L D L**T. !> L !> L is DOUBLE PRECISION array, dimension (N-1) !> The (n-1) subdiagonal elements of the unit bidiagonal matrix !> L, in elements 1 to N-1. !> D !> D is DOUBLE PRECISION array, dimension (N) !> The n diagonal elements of the diagonal matrix D. !> LD !> LD is DOUBLE PRECISION array, dimension (N-1) !> The n-1 elements L(i)*D(i). !> LLD !> LLD is DOUBLE PRECISION array, dimension (N-1) !> The n-1 elements L(i)*L(i)*D(i). !> PIVMIN !> PIVMIN is DOUBLE PRECISION !> The minimum pivot in the Sturm sequence. !> GAPTOL !> GAPTOL is DOUBLE PRECISION !> Tolerance that indicates when eigenvector entries are negligible !> w.r.t. their contribution to the residual. !> Z !> Z is COMPLEX*16 array, dimension (N) !> On input, all entries of Z must be set to 0. !> On output, Z contains the (scaled) r-th column of the !> inverse. The scaling is such that Z(R) equals 1. !> WANTNC !> WANTNC is LOGICAL !> Specifies whether NEGCNT has to be computed. !> NEGCNT !> NEGCNT is INTEGER !> If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin !> in the matrix factorization L D L**T, and NEGCNT = -1 otherwise. !> ZTZ !> ZTZ is DOUBLE PRECISION !> The square of the 2-norm of Z. !> MINGMA !> MINGMA is DOUBLE PRECISION !> The reciprocal of the largest (in magnitude) diagonal !> element of the inverse of L D L**T - sigma I. !> R !> R is INTEGER !> The twist index for the twisted factorization used to !> compute Z. !> On input, 0 <= R <= N. If R is input as 0, R is set to !> the index where (L D L**T - sigma I)^{-1} is largest !> in magnitude. If 1 <= R <= N, R is unchanged. !> On output, R contains the twist index used to compute Z. !> Ideally, R designates the position of the maximum entry in the !> eigenvector. !> ISUPPZ !> ISUPPZ is INTEGER array, dimension (2) !> The support of the vector in Z, i.e., the vector Z is !> nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ). !> NRMINV !> NRMINV is DOUBLE PRECISION !> NRMINV = 1/SQRT( ZTZ ) !> RESID !> RESID is DOUBLE PRECISION !> The residual of the FP vector. !> RESID = ABS( MINGMA )/SQRT( ZTZ ) !> RQCORR !> RQCORR is DOUBLE PRECISION !> The Rayleigh Quotient correction to LAMBDA. !> RQCORR = MINGMA*TMP !> WORK !> WORK is DOUBLE PRECISION array, dimension (4*N) !> Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Contributors: Beresford Parlett, University of California, Berkeley, USA Jim Demmel, University of California, Berkeley, USA Inderjit Dhillon, University of Texas, Austin, USA Osni Marques, LBNL/NERSC, USA Christof Voemel, University of California, Berkeley, USA Definition at line 227 of file zlar1v.f. Author Generated automatically by Doxygen for LAPACK from the source code. LAPACK Version 3.12.0 SRC/zlar1v.f(3)