.TH "SRC/zlantr.f" 3 "Version 3.12.0" "LAPACK" \" -*- nroff -*- .ad l .nh .SH NAME SRC/zlantr.f .SH SYNOPSIS .br .PP .SS "Functions/Subroutines" .in +1c .ti -1c .RI "double precision function \fBzlantr\fP (norm, uplo, diag, m, n, a, lda, work)" .br .RI "\fBZLANTR\fP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix\&. " .in -1c .SH "Function/Subroutine Documentation" .PP .SS "double precision function zlantr (character norm, character uplo, character diag, integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, double precision, dimension( * ) work)" .PP \fBZLANTR\fP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix\&. .PP \fBPurpose:\fP .RS 4 .PP .nf !> !> ZLANTR returns the value of the one norm, or the Frobenius norm, or !> the infinity norm, or the element of largest absolute value of a !> trapezoidal or triangular matrix A\&. !> .fi .PP .RE .PP \fBReturns\fP .RS 4 ZLANTR .PP .nf !> !> ZLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm' !> ( !> ( norm1(A), NORM = '1', 'O' or 'o' !> ( !> ( normI(A), NORM = 'I' or 'i' !> ( !> ( normF(A), NORM = 'F', 'f', 'E' or 'e' !> !> where norm1 denotes the one norm of a matrix (maximum column sum), !> normI denotes the infinity norm of a matrix (maximum row sum) and !> normF denotes the Frobenius norm of a matrix (square root of sum of !> squares)\&. Note that max(abs(A(i,j))) is not a consistent matrix norm\&. !> .fi .PP .RE .PP \fBParameters\fP .RS 4 \fINORM\fP .PP .nf !> NORM is CHARACTER*1 !> Specifies the value to be returned in ZLANTR as described !> above\&. !> .fi .PP .br \fIUPLO\fP .PP .nf !> UPLO is CHARACTER*1 !> Specifies whether the matrix A is upper or lower trapezoidal\&. !> = 'U': Upper trapezoidal !> = 'L': Lower trapezoidal !> Note that A is triangular instead of trapezoidal if M = N\&. !> .fi .PP .br \fIDIAG\fP .PP .nf !> DIAG is CHARACTER*1 !> Specifies whether or not the matrix A has unit diagonal\&. !> = 'N': Non-unit diagonal !> = 'U': Unit diagonal !> .fi .PP .br \fIM\fP .PP .nf !> M is INTEGER !> The number of rows of the matrix A\&. M >= 0, and if !> UPLO = 'U', M <= N\&. When M = 0, ZLANTR is set to zero\&. !> .fi .PP .br \fIN\fP .PP .nf !> N is INTEGER !> The number of columns of the matrix A\&. N >= 0, and if !> UPLO = 'L', N <= M\&. When N = 0, ZLANTR is set to zero\&. !> .fi .PP .br \fIA\fP .PP .nf !> A is COMPLEX*16 array, dimension (LDA,N) !> The trapezoidal matrix A (A is triangular if M = N)\&. !> If UPLO = 'U', the leading m by n upper trapezoidal part of !> the array A contains the upper trapezoidal matrix, and the !> strictly lower triangular part of A is not referenced\&. !> If UPLO = 'L', the leading m by n lower trapezoidal part of !> the array A contains the lower trapezoidal matrix, and the !> strictly upper triangular part of A is not referenced\&. Note !> that when DIAG = 'U', the diagonal elements of A are not !> referenced and are assumed to be one\&. !> .fi .PP .br \fILDA\fP .PP .nf !> LDA is INTEGER !> The leading dimension of the array A\&. LDA >= max(M,1)\&. !> .fi .PP .br \fIWORK\fP .PP .nf !> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), !> where LWORK >= M when NORM = 'I'; otherwise, WORK is not !> referenced\&. !> .fi .PP .RE .PP \fBAuthor\fP .RS 4 Univ\&. of Tennessee .PP Univ\&. of California Berkeley .PP Univ\&. of Colorado Denver .PP NAG Ltd\&. .RE .PP .PP Definition at line \fB140\fP of file \fBzlantr\&.f\fP\&. .SH "Author" .PP Generated automatically by Doxygen for LAPACK from the source code\&.